ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun GIF version

Theorem setsfun 13053
Description: A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem setsfun
StepHypRef Expression
1 funres 5355 . . . 4 (Fun 𝐺 → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21ad2antlr 489 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
3 funsng 5363 . . . 4 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
43adantl 277 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
5 dmres 5022 . . . . . 6 dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
65ineq1i 3401 . . . . 5 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩})
7 in32 3416 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
8 incom 3396 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩}))
9 disjdif 3564 . . . . . . . 8 (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅
108, 9eqtri 2250 . . . . . . 7 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1110ineq1i 3401 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = (∅ ∩ dom 𝐺)
12 0in 3527 . . . . . 6 (∅ ∩ dom 𝐺) = ∅
137, 11, 123eqtri 2254 . . . . 5 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
146, 13eqtri 2250 . . . 4 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1514a1i 9 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
16 funun 5358 . . 3 (((Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
172, 4, 15, 16syl21anc 1270 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
18 simpll 527 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → 𝐺𝑉)
19 opexg 4313 . . . . 5 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ∈ V)
2019adantl 277 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ∈ V)
21 setsvalg 13048 . . . 4 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2218, 20, 21syl2anc 411 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2322funeqd 5336 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (𝐺 sSet ⟨𝐼, 𝐸⟩) ↔ Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
2417, 23mpbird 167 1 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cun 3195  cin 3196  c0 3491  {csn 3666  cop 3669  dom cdm 4716  cres 4718  Fun wfun 5308  (class class class)co 5994   sSet csts 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-res 4728  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-sets 13025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator