ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun GIF version

Theorem setsfun 11678
Description: A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem setsfun
StepHypRef Expression
1 funres 5089 . . . 4 (Fun 𝐺 → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21ad2antlr 474 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
3 funsng 5094 . . . 4 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
43adantl 272 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
5 dmres 4766 . . . . . 6 dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
65ineq1i 3212 . . . . 5 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩})
7 in32 3227 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
8 incom 3207 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩}))
9 disjdif 3374 . . . . . . . 8 (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅
108, 9eqtri 2115 . . . . . . 7 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1110ineq1i 3212 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = (∅ ∩ dom 𝐺)
12 0in 3337 . . . . . 6 (∅ ∩ dom 𝐺) = ∅
137, 11, 123eqtri 2119 . . . . 5 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
146, 13eqtri 2115 . . . 4 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1514a1i 9 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
16 funun 5092 . . 3 (((Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
172, 4, 15, 16syl21anc 1180 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
18 simpll 497 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → 𝐺𝑉)
19 opexg 4079 . . . . 5 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ∈ V)
2019adantl 272 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ∈ V)
21 setsvalg 11673 . . . 4 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2218, 20, 21syl2anc 404 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2322funeqd 5071 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (𝐺 sSet ⟨𝐼, 𝐸⟩) ↔ Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
2417, 23mpbird 166 1 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  Vcvv 2633  cdif 3010  cun 3011  cin 3012  c0 3302  {csn 3466  cop 3469  dom cdm 4467  cres 4469  Fun wfun 5043  (class class class)co 5690   sSet csts 11641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-res 4479  df-iota 5014  df-fun 5051  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-sets 11650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator