ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun GIF version

Theorem setsfun 12713
Description: A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem setsfun
StepHypRef Expression
1 funres 5299 . . . 4 (Fun 𝐺 → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21ad2antlr 489 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
3 funsng 5304 . . . 4 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
43adantl 277 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
5 dmres 4967 . . . . . 6 dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
65ineq1i 3360 . . . . 5 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩})
7 in32 3375 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
8 incom 3355 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩}))
9 disjdif 3523 . . . . . . . 8 (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅
108, 9eqtri 2217 . . . . . . 7 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1110ineq1i 3360 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = (∅ ∩ dom 𝐺)
12 0in 3486 . . . . . 6 (∅ ∩ dom 𝐺) = ∅
137, 11, 123eqtri 2221 . . . . 5 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
146, 13eqtri 2217 . . . 4 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1514a1i 9 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
16 funun 5302 . . 3 (((Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
172, 4, 15, 16syl21anc 1248 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
18 simpll 527 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → 𝐺𝑉)
19 opexg 4261 . . . . 5 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ∈ V)
2019adantl 277 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ∈ V)
21 setsvalg 12708 . . . 4 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2218, 20, 21syl2anc 411 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2322funeqd 5280 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (𝐺 sSet ⟨𝐼, 𝐸⟩) ↔ Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
2417, 23mpbird 167 1 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  cin 3156  c0 3450  {csn 3622  cop 3625  dom cdm 4663  cres 4665  Fun wfun 5252  (class class class)co 5922   sSet csts 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sets 12685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator