ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun GIF version

Theorem setsfun 12550
Description: A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem setsfun
StepHypRef Expression
1 funres 5276 . . . 4 (Fun 𝐺 → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21ad2antlr 489 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
3 funsng 5281 . . . 4 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
43adantl 277 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
5 dmres 4946 . . . . . 6 dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
65ineq1i 3347 . . . . 5 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩})
7 in32 3362 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
8 incom 3342 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩}))
9 disjdif 3510 . . . . . . . 8 (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅
108, 9eqtri 2210 . . . . . . 7 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1110ineq1i 3347 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = (∅ ∩ dom 𝐺)
12 0in 3473 . . . . . 6 (∅ ∩ dom 𝐺) = ∅
137, 11, 123eqtri 2214 . . . . 5 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
146, 13eqtri 2210 . . . 4 (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1514a1i 9 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
16 funun 5279 . . 3 (((Fun (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
172, 4, 15, 16syl21anc 1248 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
18 simpll 527 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → 𝐺𝑉)
19 opexg 4246 . . . . 5 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ∈ V)
2019adantl 277 . . . 4 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ∈ V)
21 setsvalg 12545 . . . 4 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2218, 20, 21syl2anc 411 . . 3 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2322funeqd 5257 . 2 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (𝐺 sSet ⟨𝐼, 𝐸⟩) ↔ Fun ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
2417, 23mpbird 167 1 (((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  Vcvv 2752  cdif 3141  cun 3142  cin 3143  c0 3437  {csn 3607  cop 3610  dom cdm 4644  cres 4646  Fun wfun 5229  (class class class)co 5897   sSet csts 12513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-res 4656  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-sets 12522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator