ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restbasg GIF version

Theorem restbasg 14684
Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restbasg ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → (𝐵t 𝐴) ∈ TopBases)

Proof of Theorem restbasg
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2784 . . 3 (𝐴𝑉𝐴 ∈ V)
2 elrest 13122 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑎 ∈ (𝐵t 𝐴) ↔ ∃𝑢𝐵 𝑎 = (𝑢𝐴)))
3 elrest 13122 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑏 ∈ (𝐵t 𝐴) ↔ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
42, 3anbi12d 473 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴))))
5 reeanv 2677 . . . . . 6 (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
64, 5bitr4di 198 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ ∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴))))
7 simplll 533 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝐵 ∈ TopBases)
8 simplrl 535 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑢𝐵)
9 simplrr 536 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑣𝐵)
10 simpr 110 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
1110elin1d 3363 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ (𝑢𝑣))
12 basis2 14564 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑢𝐵) ∧ (𝑣𝐵𝑐 ∈ (𝑢𝑣))) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
137, 8, 9, 11, 12syl22anc 1251 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
14 simplll 533 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝐵 ∈ TopBases ∧ 𝐴 ∈ V))
1514simpld 112 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐵 ∈ TopBases)
1614simprd 114 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐴 ∈ V)
17 simprl 529 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧𝐵)
18 elrestr 13123 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V ∧ 𝑧𝐵) → (𝑧𝐴) ∈ (𝐵t 𝐴))
1915, 16, 17, 18syl3anc 1250 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ∈ (𝐵t 𝐴))
20 simprrl 539 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝑧)
21 simplr 528 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
2221elin2d 3364 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝐴)
2320, 22elind 3359 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ (𝑧𝐴))
24 simprrr 540 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧 ⊆ (𝑢𝑣))
2524ssrind 3401 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))
26 eleq2 2270 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑐𝑤𝑐 ∈ (𝑧𝐴)))
27 sseq1 3217 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴) ↔ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴)))
2826, 27anbi12d 473 . . . . . . . . . . 11 (𝑤 = (𝑧𝐴) → ((𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)) ↔ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))))
2928rspcev 2878 . . . . . . . . . 10 (((𝑧𝐴) ∈ (𝐵t 𝐴) ∧ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3019, 23, 25, 29syl12anc 1248 . . . . . . . . 9 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3113, 30rexlimddv 2629 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3231ralrimiva 2580 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
33 ineq12 3370 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝐴) ∩ (𝑣𝐴)))
34 inindir 3392 . . . . . . . . 9 ((𝑢𝑣) ∩ 𝐴) = ((𝑢𝐴) ∩ (𝑣𝐴))
3533, 34eqtr4di 2257 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝑣) ∩ 𝐴))
3635sseq2d 3224 . . . . . . . . . 10 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑤 ⊆ (𝑎𝑏) ↔ 𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3736anbi2d 464 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ((𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ (𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
3837rexbidv 2508 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
3935, 38raleqbidv 2719 . . . . . . 7 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
4032, 39syl5ibrcom 157 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4140rexlimdvva 2632 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
426, 41sylbid 150 . . . 4 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4342ralrimivv 2588 . . 3 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
441, 43sylan2 286 . 2 ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
45 restfn 13119 . . . 4 t Fn (V × V)
46 simpl 109 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → 𝐵 ∈ TopBases)
4746elexd 2786 . . . 4 ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → 𝐵 ∈ V)
481adantl 277 . . . 4 ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → 𝐴 ∈ V)
49 fnovex 5984 . . . 4 (( ↾t Fn (V × V) ∧ 𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵t 𝐴) ∈ V)
5045, 47, 48, 49mp3an2i 1355 . . 3 ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → (𝐵t 𝐴) ∈ V)
51 isbasis2g 14561 . . 3 ((𝐵t 𝐴) ∈ V → ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
5250, 51syl 14 . 2 ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
5344, 52mpbird 167 1 ((𝐵 ∈ TopBases ∧ 𝐴𝑉) → (𝐵t 𝐴) ∈ TopBases)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  cin 3166  wss 3167   × cxp 4677   Fn wfn 5271  (class class class)co 5951  t crest 13115  TopBasesctb 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-rest 13117  df-bases 14559
This theorem is referenced by:  resttop  14686
  Copyright terms: Public domain W3C validator