ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqin2 GIF version

Theorem sseqin2 3346
Description: A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
sseqin2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)

Proof of Theorem sseqin2
StepHypRef Expression
1 dfss1 3331 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  cin 3120  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by:  dfss4st  3360  resabs1  4920  rescnvcnv  5073  frecfnom  6380  fiintim  6906  nn0supp  9187  uzin  9519  iooval2  9872  fzval2  9968  suprzubdc  11907  dfphi2  12174  resttopon  12965  restabs  12969  restopnb  12975  txcnmpt  13067
  Copyright terms: Public domain W3C validator