ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqin2 GIF version

Theorem sseqin2 3383
Description: A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
sseqin2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)

Proof of Theorem sseqin2
StepHypRef Expression
1 dfss1 3368 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  cin 3156  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  dfss4st  3397  resabs1  4976  mptimass  5023  rescnvcnv  5133  frecfnom  6468  fiintim  7001  nn0supp  9320  uzin  9653  iooval2  10009  fzval2  10105  suprzubdc  10345  bitsinv1  12146  dfphi2  12415  ressabsg  12781  resttopon  14493  restabs  14497  restopnb  14503  txcnmpt  14595
  Copyright terms: Public domain W3C validator