![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqin2 | GIF version |
Description: A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
sseqin2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss1 3363 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∩ cin 3152 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: dfss4st 3392 resabs1 4971 mptimass 5018 rescnvcnv 5128 frecfnom 6454 fiintim 6985 nn0supp 9292 uzin 9625 iooval2 9981 fzval2 10077 suprzubdc 12089 dfphi2 12358 ressabsg 12694 resttopon 14339 restabs 14343 restopnb 14349 txcnmpt 14441 |
Copyright terms: Public domain | W3C validator |