ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4 GIF version

Theorem iota4 5234
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)

Proof of Theorem iota4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2045 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 biimpr 130 . . . . . 6 ((𝜑𝑥 = 𝑧) → (𝑥 = 𝑧𝜑))
32alimi 1466 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑥(𝑥 = 𝑧𝜑))
4 sb2 1778 . . . . 5 (∀𝑥(𝑥 = 𝑧𝜑) → [𝑧 / 𝑥]𝜑)
53, 4syl 14 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → [𝑧 / 𝑥]𝜑)
6 iotaval 5226 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
76eqcomd 2199 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
8 dfsbcq2 2988 . . . . 5 (𝑧 = (℩𝑥𝜑) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
97, 8syl 14 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
105, 9mpbid 147 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
1110exlimiv 1609 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
121, 11sylbi 121 1 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wex 1503  [wsb 1773  ∃!weu 2042  [wsbc 2985  cio 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836  df-iota 5215
This theorem is referenced by:  iota4an  5235  iotacl  5239
  Copyright terms: Public domain W3C validator