ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4 GIF version

Theorem iota4 5171
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)

Proof of Theorem iota4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2017 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 biimpr 129 . . . . . 6 ((𝜑𝑥 = 𝑧) → (𝑥 = 𝑧𝜑))
32alimi 1443 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑥(𝑥 = 𝑧𝜑))
4 sb2 1755 . . . . 5 (∀𝑥(𝑥 = 𝑧𝜑) → [𝑧 / 𝑥]𝜑)
53, 4syl 14 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → [𝑧 / 𝑥]𝜑)
6 iotaval 5164 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
76eqcomd 2171 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
8 dfsbcq2 2954 . . . . 5 (𝑧 = (℩𝑥𝜑) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
97, 8syl 14 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
105, 9mpbid 146 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
1110exlimiv 1586 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
121, 11sylbi 120 1 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341   = wceq 1343  wex 1480  [wsb 1750  ∃!weu 2014  [wsbc 2951  cio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153
This theorem is referenced by:  iota4an  5172  iotacl  5176
  Copyright terms: Public domain W3C validator