ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euiotaex GIF version

Theorem euiotaex 5074
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
euiotaex (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)

Proof of Theorem euiotaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotaval 5069 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
21eqcomd 2123 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
32eximi 1564 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑))
4 df-eu 1980 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 isset 2666 . 2 ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑))
63, 4, 53imtr4i 200 1 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1314   = wceq 1316  wex 1453  wcel 1465  ∃!weu 1977  Vcvv 2660  cio 5056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-rex 2399  df-v 2662  df-sbc 2883  df-un 3045  df-sn 3503  df-pr 3504  df-uni 3707  df-iota 5058
This theorem is referenced by:  iota4an  5077  funfvex  5406
  Copyright terms: Public domain W3C validator