| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euiotaex | GIF version | ||
| Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the ℩ class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.) |
| Ref | Expression |
|---|---|
| euiotaex | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval 5230 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
| 2 | 1 | eqcomd 2202 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑)) |
| 3 | 2 | eximi 1614 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑)) |
| 4 | df-eu 2048 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 5 | isset 2769 | . 2 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 ℩cio 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 |
| This theorem is referenced by: iota4an 5239 funfvex 5575 pcval 12465 |
| Copyright terms: Public domain | W3C validator |