ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euiotaex GIF version

Theorem euiotaex 5295
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
euiotaex (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)

Proof of Theorem euiotaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotaval 5290 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
21eqcomd 2235 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
32eximi 1646 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑))
4 df-eu 2080 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 isset 2806 . 2 ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑))
63, 4, 53imtr4i 201 1 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  Vcvv 2799  cio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278
This theorem is referenced by:  iota4an  5299  funfvex  5644  elfvex  5661  pcval  12819
  Copyright terms: Public domain W3C validator