![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euiotaex | GIF version |
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the ℩ class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
euiotaex | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 5035 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
2 | 1 | eqcomd 2105 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑)) |
3 | 2 | eximi 1547 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑)) |
4 | df-eu 1963 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
5 | isset 2647 | . 2 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑)) | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1297 = wceq 1299 ∃wex 1436 ∈ wcel 1448 ∃!weu 1960 Vcvv 2641 ℩cio 5022 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rex 2381 df-v 2643 df-sbc 2863 df-un 3025 df-sn 3480 df-pr 3481 df-uni 3684 df-iota 5024 |
This theorem is referenced by: iota4an 5043 funfvex 5370 |
Copyright terms: Public domain | W3C validator |