Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euiotaex | GIF version |
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the ℩ class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
euiotaex | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 5171 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
2 | 1 | eqcomd 2176 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑)) |
3 | 2 | eximi 1593 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑)) |
4 | df-eu 2022 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
5 | isset 2736 | . 2 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑)) | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 ∃wex 1485 ∃!weu 2019 ∈ wcel 2141 Vcvv 2730 ℩cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 |
This theorem is referenced by: iota4an 5179 funfvex 5513 pcval 12250 |
Copyright terms: Public domain | W3C validator |