ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euiotaex GIF version

Theorem euiotaex 5247
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
euiotaex (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)

Proof of Theorem euiotaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotaval 5242 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
21eqcomd 2210 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
32eximi 1622 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦 𝑦 = (℩𝑥𝜑))
4 df-eu 2056 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 isset 2777 . 2 ((℩𝑥𝜑) ∈ V ↔ ∃𝑦 𝑦 = (℩𝑥𝜑))
63, 4, 53imtr4i 201 1 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370   = wceq 1372  wex 1514  ∃!weu 2053  wcel 2175  Vcvv 2771  cio 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-sn 3638  df-pr 3639  df-uni 3850  df-iota 5231
This theorem is referenced by:  iota4an  5251  funfvex  5592  pcval  12590
  Copyright terms: Public domain W3C validator