| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgeq1 | GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5560 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘𝑥)) = (𝐺‘(𝑔‘𝑥))) | |
| 2 | 1 | iuneq2d 3942 | . . . . 5 ⊢ (𝐹 = 𝐺 → ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)) = ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))) |
| 3 | 2 | uneq2d 3318 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) |
| 4 | 3 | mpteq2dv 4125 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) |
| 5 | recseq 6373 | . . 3 ⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) |
| 7 | df-irdg 6437 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
| 8 | df-irdg 6437 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) | |
| 9 | 6, 7, 8 | 3eqtr4g 2254 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Vcvv 2763 ∪ cun 3155 ∪ ciun 3917 ↦ cmpt 4095 dom cdm 4664 ‘cfv 5259 recscrecs 6371 reccrdg 6436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-iota 5220 df-fv 5267 df-recs 6372 df-irdg 6437 |
| This theorem is referenced by: omv 6522 oeiv 6523 |
| Copyright terms: Public domain | W3C validator |