Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgeq1 | GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5506 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘𝑥)) = (𝐺‘(𝑔‘𝑥))) | |
2 | 1 | iuneq2d 3907 | . . . . 5 ⊢ (𝐹 = 𝐺 → ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)) = ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))) |
3 | 2 | uneq2d 3287 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) |
4 | 3 | mpteq2dv 4089 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) |
5 | recseq 6297 | . . 3 ⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) |
7 | df-irdg 6361 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
8 | df-irdg 6361 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) | |
9 | 6, 7, 8 | 3eqtr4g 2233 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Vcvv 2735 ∪ cun 3125 ∪ ciun 3882 ↦ cmpt 4059 dom cdm 4620 ‘cfv 5208 recscrecs 6295 reccrdg 6360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-iota 5170 df-fv 5216 df-recs 6296 df-irdg 6361 |
This theorem is referenced by: omv 6446 oeiv 6447 |
Copyright terms: Public domain | W3C validator |