| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgeq1 | GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5625 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘𝑥)) = (𝐺‘(𝑔‘𝑥))) | |
| 2 | 1 | iuneq2d 3989 | . . . . 5 ⊢ (𝐹 = 𝐺 → ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)) = ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))) |
| 3 | 2 | uneq2d 3358 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) |
| 4 | 3 | mpteq2dv 4174 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) |
| 5 | recseq 6450 | . . 3 ⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) |
| 7 | df-irdg 6514 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
| 8 | df-irdg 6514 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) | |
| 9 | 6, 7, 8 | 3eqtr4g 2287 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 Vcvv 2799 ∪ cun 3195 ∪ ciun 3964 ↦ cmpt 4144 dom cdm 4718 ‘cfv 5317 recscrecs 6448 reccrdg 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-iota 5277 df-fv 5325 df-recs 6449 df-irdg 6514 |
| This theorem is referenced by: omv 6599 oeiv 6600 |
| Copyright terms: Public domain | W3C validator |