ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq1 GIF version

Theorem rdgeq1 6424
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))

Proof of Theorem rdgeq1
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5553 . . . . . 6 (𝐹 = 𝐺 → (𝐹‘(𝑔𝑥)) = (𝐺‘(𝑔𝑥)))
21iuneq2d 3937 . . . . 5 (𝐹 = 𝐺 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))
32uneq2d 3313 . . . 4 (𝐹 = 𝐺 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥))))
43mpteq2dv 4120 . . 3 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))))
5 recseq 6359 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥))))))
64, 5syl 14 . 2 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥))))))
7 df-irdg 6423 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
8 df-irdg 6423 . 2 rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))))
96, 7, 83eqtr4g 2251 1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2760  cun 3151   ciun 3912  cmpt 4090  dom cdm 4659  cfv 5254  recscrecs 6357  reccrdg 6422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-iota 5215  df-fv 5262  df-recs 6358  df-irdg 6423
This theorem is referenced by:  omv  6508  oeiv  6509
  Copyright terms: Public domain W3C validator