![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgeq1 | GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
rdgeq1 | ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5554 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑔‘𝑥)) = (𝐺‘(𝑔‘𝑥))) | |
2 | 1 | iuneq2d 3938 | . . . . 5 ⊢ (𝐹 = 𝐺 → ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)) = ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))) |
3 | 2 | uneq2d 3314 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) |
4 | 3 | mpteq2dv 4121 | . . 3 ⊢ (𝐹 = 𝐺 → (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) |
5 | recseq 6361 | . . 3 ⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥)))))) |
7 | df-irdg 6425 | . 2 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
8 | df-irdg 6425 | . 2 ⊢ rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐺‘(𝑔‘𝑥))))) | |
9 | 6, 7, 8 | 3eqtr4g 2251 | 1 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Vcvv 2760 ∪ cun 3152 ∪ ciun 3913 ↦ cmpt 4091 dom cdm 4660 ‘cfv 5255 recscrecs 6359 reccrdg 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-iota 5216 df-fv 5263 df-recs 6360 df-irdg 6425 |
This theorem is referenced by: omv 6510 oeiv 6511 |
Copyright terms: Public domain | W3C validator |