ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq1 GIF version

Theorem rdgeq1 6362
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))

Proof of Theorem rdgeq1
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5506 . . . . . 6 (𝐹 = 𝐺 → (𝐹‘(𝑔𝑥)) = (𝐺‘(𝑔𝑥)))
21iuneq2d 3907 . . . . 5 (𝐹 = 𝐺 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))
32uneq2d 3287 . . . 4 (𝐹 = 𝐺 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥))))
43mpteq2dv 4089 . . 3 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))))
5 recseq 6297 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥))))))
64, 5syl 14 . 2 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥))))))
7 df-irdg 6361 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
8 df-irdg 6361 . 2 rec(𝐺, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐺‘(𝑔𝑥)))))
96, 7, 83eqtr4g 2233 1 (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  Vcvv 2735  cun 3125   ciun 3882  cmpt 4059  dom cdm 4620  cfv 5208  recscrecs 6295  reccrdg 6360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-iota 5170  df-fv 5216  df-recs 6296  df-irdg 6361
This theorem is referenced by:  omv  6446  oeiv  6447
  Copyright terms: Public domain W3C validator