ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixpsn GIF version

Theorem elixpsn 6789
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
elixpsn (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦

Proof of Theorem elixpsn
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3629 . . . 4 (𝑧 = 𝐴 → {𝑧} = {𝐴})
21ixpeq1d 6764 . . 3 (𝑧 = 𝐴X𝑥 ∈ {𝑧}𝐵 = X𝑥 ∈ {𝐴}𝐵)
32eleq2d 2263 . 2 (𝑧 = 𝐴 → (𝐹X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝐴}𝐵))
4 opeq1 3804 . . . . 5 (𝑧 = 𝐴 → ⟨𝑧, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
54sneqd 3631 . . . 4 (𝑧 = 𝐴 → {⟨𝑧, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
65eqeq2d 2205 . . 3 (𝑧 = 𝐴 → (𝐹 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, 𝑦⟩}))
76rexbidv 2495 . 2 (𝑧 = 𝐴 → (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
8 elex 2771 . . 3 (𝐹X𝑥 ∈ {𝑧}𝐵𝐹 ∈ V)
9 vex 2763 . . . . . . 7 𝑧 ∈ V
10 vex 2763 . . . . . . 7 𝑦 ∈ V
119, 10opex 4258 . . . . . 6 𝑧, 𝑦⟩ ∈ V
1211snex 4214 . . . . 5 {⟨𝑧, 𝑦⟩} ∈ V
13 eleq1 2256 . . . . 5 (𝐹 = {⟨𝑧, 𝑦⟩} → (𝐹 ∈ V ↔ {⟨𝑧, 𝑦⟩} ∈ V))
1412, 13mpbiri 168 . . . 4 (𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
1514rexlimivw 2607 . . 3 (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
16 eleq1 2256 . . . 4 (𝑤 = 𝐹 → (𝑤X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝑧}𝐵))
17 eqeq1 2200 . . . . 5 (𝑤 = 𝐹 → (𝑤 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝑧, 𝑦⟩}))
1817rexbidv 2495 . . . 4 (𝑤 = 𝐹 → (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
19 vex 2763 . . . . . 6 𝑤 ∈ V
2019elixp 6759 . . . . 5 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵))
21 fveq2 5554 . . . . . . . 8 (𝑥 = 𝑧 → (𝑤𝑥) = (𝑤𝑧))
2221eleq1d 2262 . . . . . . 7 (𝑥 = 𝑧 → ((𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
239, 22ralsn 3661 . . . . . 6 (∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2423anbi2i 457 . . . . 5 ((𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵) ↔ (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
25 simpl 109 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤 Fn {𝑧})
26 fveq2 5554 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑤𝑦) = (𝑤𝑧))
2726eleq1d 2262 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
289, 27ralsn 3661 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2928biimpri 133 . . . . . . . . . 10 ((𝑤𝑧) ∈ 𝐵 → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
3029adantl 277 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
31 ffnfv 5716 . . . . . . . . 9 (𝑤:{𝑧}⟶𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵))
3225, 30, 31sylanbrc 417 . . . . . . . 8 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤:{𝑧}⟶𝐵)
339fsn2 5732 . . . . . . . 8 (𝑤:{𝑧}⟶𝐵 ↔ ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
3432, 33sylib 122 . . . . . . 7 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
35 opeq2 3805 . . . . . . . . 9 (𝑦 = (𝑤𝑧) → ⟨𝑧, 𝑦⟩ = ⟨𝑧, (𝑤𝑧)⟩)
3635sneqd 3631 . . . . . . . 8 (𝑦 = (𝑤𝑧) → {⟨𝑧, 𝑦⟩} = {⟨𝑧, (𝑤𝑧)⟩})
3736rspceeqv 2882 . . . . . . 7 (((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
3834, 37syl 14 . . . . . 6 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
399, 10fvsn 5753 . . . . . . . . . 10 ({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦
40 id 19 . . . . . . . . . 10 (𝑦𝐵𝑦𝐵)
4139, 40eqeltrid 2280 . . . . . . . . 9 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)
429, 10fnsn 5308 . . . . . . . . 9 {⟨𝑧, 𝑦⟩} Fn {𝑧}
4341, 42jctil 312 . . . . . . . 8 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
44 fneq1 5342 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ↔ {⟨𝑧, 𝑦⟩} Fn {𝑧}))
45 fveq1 5553 . . . . . . . . . 10 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
4645eleq1d 2262 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤𝑧) ∈ 𝐵 ↔ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
4744, 46anbi12d 473 . . . . . . . 8 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)))
4843, 47syl5ibrcom 157 . . . . . . 7 (𝑦𝐵 → (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵)))
4948rexlimiv 2605 . . . . . 6 (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
5038, 49impbii 126 . . . . 5 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5120, 24, 503bitri 206 . . . 4 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5216, 18, 51vtoclbg 2821 . . 3 (𝐹 ∈ V → (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
538, 15, 52pm5.21nii 705 . 2 (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩})
543, 7, 53vtoclbg 2821 1 (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  {csn 3618  cop 3621   Fn wfn 5249  wf 5250  cfv 5254  Xcixp 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ixp 6753
This theorem is referenced by:  ixpsnf1o  6790
  Copyright terms: Public domain W3C validator