| Step | Hyp | Ref
| Expression |
| 1 | | sneq 3645 |
. . . 4
⊢ (𝑧 = 𝐴 → {𝑧} = {𝐴}) |
| 2 | 1 | ixpeq1d 6804 |
. . 3
⊢ (𝑧 = 𝐴 → X𝑥 ∈ {𝑧}𝐵 = X𝑥 ∈ {𝐴}𝐵) |
| 3 | 2 | eleq2d 2276 |
. 2
⊢ (𝑧 = 𝐴 → (𝐹 ∈ X𝑥 ∈ {𝑧}𝐵 ↔ 𝐹 ∈ X𝑥 ∈ {𝐴}𝐵)) |
| 4 | | opeq1 3821 |
. . . . 5
⊢ (𝑧 = 𝐴 → 〈𝑧, 𝑦〉 = 〈𝐴, 𝑦〉) |
| 5 | 4 | sneqd 3647 |
. . . 4
⊢ (𝑧 = 𝐴 → {〈𝑧, 𝑦〉} = {〈𝐴, 𝑦〉}) |
| 6 | 5 | eqeq2d 2218 |
. . 3
⊢ (𝑧 = 𝐴 → (𝐹 = {〈𝑧, 𝑦〉} ↔ 𝐹 = {〈𝐴, 𝑦〉})) |
| 7 | 6 | rexbidv 2508 |
. 2
⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉} ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) |
| 8 | | elex 2784 |
. . 3
⊢ (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 → 𝐹 ∈ V) |
| 9 | | vex 2776 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 10 | | vex 2776 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 11 | 9, 10 | opex 4277 |
. . . . . 6
⊢
〈𝑧, 𝑦〉 ∈ V |
| 12 | 11 | snex 4233 |
. . . . 5
⊢
{〈𝑧, 𝑦〉} ∈
V |
| 13 | | eleq1 2269 |
. . . . 5
⊢ (𝐹 = {〈𝑧, 𝑦〉} → (𝐹 ∈ V ↔ {〈𝑧, 𝑦〉} ∈ V)) |
| 14 | 12, 13 | mpbiri 168 |
. . . 4
⊢ (𝐹 = {〈𝑧, 𝑦〉} → 𝐹 ∈ V) |
| 15 | 14 | rexlimivw 2620 |
. . 3
⊢
(∃𝑦 ∈
𝐵 𝐹 = {〈𝑧, 𝑦〉} → 𝐹 ∈ V) |
| 16 | | eleq1 2269 |
. . . 4
⊢ (𝑤 = 𝐹 → (𝑤 ∈ X𝑥 ∈ {𝑧}𝐵 ↔ 𝐹 ∈ X𝑥 ∈ {𝑧}𝐵)) |
| 17 | | eqeq1 2213 |
. . . . 5
⊢ (𝑤 = 𝐹 → (𝑤 = {〈𝑧, 𝑦〉} ↔ 𝐹 = {〈𝑧, 𝑦〉})) |
| 18 | 17 | rexbidv 2508 |
. . . 4
⊢ (𝑤 = 𝐹 → (∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉} ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉})) |
| 19 | | vex 2776 |
. . . . . 6
⊢ 𝑤 ∈ V |
| 20 | 19 | elixp 6799 |
. . . . 5
⊢ (𝑤 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤‘𝑥) ∈ 𝐵)) |
| 21 | | fveq2 5583 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑤‘𝑥) = (𝑤‘𝑧)) |
| 22 | 21 | eleq1d 2275 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑤‘𝑥) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵)) |
| 23 | 9, 22 | ralsn 3677 |
. . . . . 6
⊢
(∀𝑥 ∈
{𝑧} (𝑤‘𝑥) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵) |
| 24 | 23 | anbi2i 457 |
. . . . 5
⊢ ((𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤‘𝑥) ∈ 𝐵) ↔ (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵)) |
| 25 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → 𝑤 Fn {𝑧}) |
| 26 | | fveq2 5583 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑤‘𝑦) = (𝑤‘𝑧)) |
| 27 | 26 | eleq1d 2275 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑤‘𝑦) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵)) |
| 28 | 9, 27 | ralsn 3677 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
{𝑧} (𝑤‘𝑦) ∈ 𝐵 ↔ (𝑤‘𝑧) ∈ 𝐵) |
| 29 | 28 | biimpri 133 |
. . . . . . . . . 10
⊢ ((𝑤‘𝑧) ∈ 𝐵 → ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵) |
| 30 | 29 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵) |
| 31 | | ffnfv 5745 |
. . . . . . . . 9
⊢ (𝑤:{𝑧}⟶𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑦 ∈ {𝑧} (𝑤‘𝑦) ∈ 𝐵)) |
| 32 | 25, 30, 31 | sylanbrc 417 |
. . . . . . . 8
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → 𝑤:{𝑧}⟶𝐵) |
| 33 | 9 | fsn2 5761 |
. . . . . . . 8
⊢ (𝑤:{𝑧}⟶𝐵 ↔ ((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {〈𝑧, (𝑤‘𝑧)〉})) |
| 34 | 32, 33 | sylib 122 |
. . . . . . 7
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {〈𝑧, (𝑤‘𝑧)〉})) |
| 35 | | opeq2 3822 |
. . . . . . . . 9
⊢ (𝑦 = (𝑤‘𝑧) → 〈𝑧, 𝑦〉 = 〈𝑧, (𝑤‘𝑧)〉) |
| 36 | 35 | sneqd 3647 |
. . . . . . . 8
⊢ (𝑦 = (𝑤‘𝑧) → {〈𝑧, 𝑦〉} = {〈𝑧, (𝑤‘𝑧)〉}) |
| 37 | 36 | rspceeqv 2896 |
. . . . . . 7
⊢ (((𝑤‘𝑧) ∈ 𝐵 ∧ 𝑤 = {〈𝑧, (𝑤‘𝑧)〉}) → ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
| 38 | 34, 37 | syl 14 |
. . . . . 6
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) → ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
| 39 | 9, 10 | fvsn 5786 |
. . . . . . . . . 10
⊢
({〈𝑧, 𝑦〉}‘𝑧) = 𝑦 |
| 40 | | id 19 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵) |
| 41 | 39, 40 | eqeltrid 2293 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵) |
| 42 | 9, 10 | fnsn 5333 |
. . . . . . . . 9
⊢
{〈𝑧, 𝑦〉} Fn {𝑧} |
| 43 | 41, 42 | jctil 312 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ({〈𝑧, 𝑦〉} Fn {𝑧} ∧ ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵)) |
| 44 | | fneq1 5367 |
. . . . . . . . 9
⊢ (𝑤 = {〈𝑧, 𝑦〉} → (𝑤 Fn {𝑧} ↔ {〈𝑧, 𝑦〉} Fn {𝑧})) |
| 45 | | fveq1 5582 |
. . . . . . . . . 10
⊢ (𝑤 = {〈𝑧, 𝑦〉} → (𝑤‘𝑧) = ({〈𝑧, 𝑦〉}‘𝑧)) |
| 46 | 45 | eleq1d 2275 |
. . . . . . . . 9
⊢ (𝑤 = {〈𝑧, 𝑦〉} → ((𝑤‘𝑧) ∈ 𝐵 ↔ ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵)) |
| 47 | 44, 46 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑤 = {〈𝑧, 𝑦〉} → ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) ↔ ({〈𝑧, 𝑦〉} Fn {𝑧} ∧ ({〈𝑧, 𝑦〉}‘𝑧) ∈ 𝐵))) |
| 48 | 43, 47 | syl5ibrcom 157 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → (𝑤 = {〈𝑧, 𝑦〉} → (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵))) |
| 49 | 48 | rexlimiv 2618 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 𝑤 = {〈𝑧, 𝑦〉} → (𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵)) |
| 50 | 38, 49 | impbii 126 |
. . . . 5
⊢ ((𝑤 Fn {𝑧} ∧ (𝑤‘𝑧) ∈ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
| 51 | 20, 24, 50 | 3bitri 206 |
. . . 4
⊢ (𝑤 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑤 = {〈𝑧, 𝑦〉}) |
| 52 | 16, 18, 51 | vtoclbg 2835 |
. . 3
⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉})) |
| 53 | 8, 15, 52 | pm5.21nii 706 |
. 2
⊢ (𝐹 ∈ X𝑥 ∈
{𝑧}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝑧, 𝑦〉}) |
| 54 | 3, 7, 53 | vtoclbg 2835 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) |