ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixpsn GIF version

Theorem elixpsn 6637
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
elixpsn (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦

Proof of Theorem elixpsn
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3543 . . . 4 (𝑧 = 𝐴 → {𝑧} = {𝐴})
21ixpeq1d 6612 . . 3 (𝑧 = 𝐴X𝑥 ∈ {𝑧}𝐵 = X𝑥 ∈ {𝐴}𝐵)
32eleq2d 2210 . 2 (𝑧 = 𝐴 → (𝐹X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝐴}𝐵))
4 opeq1 3713 . . . . 5 (𝑧 = 𝐴 → ⟨𝑧, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
54sneqd 3545 . . . 4 (𝑧 = 𝐴 → {⟨𝑧, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
65eqeq2d 2152 . . 3 (𝑧 = 𝐴 → (𝐹 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, 𝑦⟩}))
76rexbidv 2439 . 2 (𝑧 = 𝐴 → (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
8 elex 2700 . . 3 (𝐹X𝑥 ∈ {𝑧}𝐵𝐹 ∈ V)
9 vex 2692 . . . . . . 7 𝑧 ∈ V
10 vex 2692 . . . . . . 7 𝑦 ∈ V
119, 10opex 4159 . . . . . 6 𝑧, 𝑦⟩ ∈ V
1211snex 4117 . . . . 5 {⟨𝑧, 𝑦⟩} ∈ V
13 eleq1 2203 . . . . 5 (𝐹 = {⟨𝑧, 𝑦⟩} → (𝐹 ∈ V ↔ {⟨𝑧, 𝑦⟩} ∈ V))
1412, 13mpbiri 167 . . . 4 (𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
1514rexlimivw 2548 . . 3 (∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩} → 𝐹 ∈ V)
16 eleq1 2203 . . . 4 (𝑤 = 𝐹 → (𝑤X𝑥 ∈ {𝑧}𝐵𝐹X𝑥 ∈ {𝑧}𝐵))
17 eqeq1 2147 . . . . 5 (𝑤 = 𝐹 → (𝑤 = {⟨𝑧, 𝑦⟩} ↔ 𝐹 = {⟨𝑧, 𝑦⟩}))
1817rexbidv 2439 . . . 4 (𝑤 = 𝐹 → (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
19 vex 2692 . . . . . 6 𝑤 ∈ V
2019elixp 6607 . . . . 5 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵))
21 fveq2 5429 . . . . . . . 8 (𝑥 = 𝑧 → (𝑤𝑥) = (𝑤𝑧))
2221eleq1d 2209 . . . . . . 7 (𝑥 = 𝑧 → ((𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
239, 22ralsn 3574 . . . . . 6 (∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2423anbi2i 453 . . . . 5 ((𝑤 Fn {𝑧} ∧ ∀𝑥 ∈ {𝑧} (𝑤𝑥) ∈ 𝐵) ↔ (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
25 simpl 108 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤 Fn {𝑧})
26 fveq2 5429 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑤𝑦) = (𝑤𝑧))
2726eleq1d 2209 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵))
289, 27ralsn 3574 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵 ↔ (𝑤𝑧) ∈ 𝐵)
2928biimpri 132 . . . . . . . . . 10 ((𝑤𝑧) ∈ 𝐵 → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
3029adantl 275 . . . . . . . . 9 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵)
31 ffnfv 5586 . . . . . . . . 9 (𝑤:{𝑧}⟶𝐵 ↔ (𝑤 Fn {𝑧} ∧ ∀𝑦 ∈ {𝑧} (𝑤𝑦) ∈ 𝐵))
3225, 30, 31sylanbrc 414 . . . . . . . 8 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → 𝑤:{𝑧}⟶𝐵)
339fsn2 5602 . . . . . . . 8 (𝑤:{𝑧}⟶𝐵 ↔ ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
3432, 33sylib 121 . . . . . . 7 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}))
35 opeq2 3714 . . . . . . . . 9 (𝑦 = (𝑤𝑧) → ⟨𝑧, 𝑦⟩ = ⟨𝑧, (𝑤𝑧)⟩)
3635sneqd 3545 . . . . . . . 8 (𝑦 = (𝑤𝑧) → {⟨𝑧, 𝑦⟩} = {⟨𝑧, (𝑤𝑧)⟩})
3736rspceeqv 2811 . . . . . . 7 (((𝑤𝑧) ∈ 𝐵𝑤 = {⟨𝑧, (𝑤𝑧)⟩}) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
3834, 37syl 14 . . . . . 6 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) → ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
399, 10fvsn 5623 . . . . . . . . . 10 ({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦
40 id 19 . . . . . . . . . 10 (𝑦𝐵𝑦𝐵)
4139, 40eqeltrid 2227 . . . . . . . . 9 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)
429, 10fnsn 5185 . . . . . . . . 9 {⟨𝑧, 𝑦⟩} Fn {𝑧}
4341, 42jctil 310 . . . . . . . 8 (𝑦𝐵 → ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
44 fneq1 5219 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ↔ {⟨𝑧, 𝑦⟩} Fn {𝑧}))
45 fveq1 5428 . . . . . . . . . 10 (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
4645eleq1d 2209 . . . . . . . . 9 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤𝑧) ∈ 𝐵 ↔ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵))
4744, 46anbi12d 465 . . . . . . . 8 (𝑤 = {⟨𝑧, 𝑦⟩} → ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ({⟨𝑧, 𝑦⟩} Fn {𝑧} ∧ ({⟨𝑧, 𝑦⟩}‘𝑧) ∈ 𝐵)))
4843, 47syl5ibrcom 156 . . . . . . 7 (𝑦𝐵 → (𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵)))
4948rexlimiv 2546 . . . . . 6 (∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩} → (𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵))
5038, 49impbii 125 . . . . 5 ((𝑤 Fn {𝑧} ∧ (𝑤𝑧) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5120, 24, 503bitri 205 . . . 4 (𝑤X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝑤 = {⟨𝑧, 𝑦⟩})
5216, 18, 51vtoclbg 2750 . . 3 (𝐹 ∈ V → (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩}))
538, 15, 52pm5.21nii 694 . 2 (𝐹X𝑥 ∈ {𝑧}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝑧, 𝑦⟩})
543, 7, 53vtoclbg 2750 1 (𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  wrex 2418  Vcvv 2689  {csn 3532  cop 3535   Fn wfn 5126  wf 5127  cfv 5131  Xcixp 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ixp 6601
This theorem is referenced by:  ixpsnf1o  6638
  Copyright terms: Public domain W3C validator