Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseli | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssel 3136 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sselii 3139 sselid 3140 elun1 3289 elun2 3290 finds 4577 finds2 4578 issref 4986 2elresin 5299 fvun1 5552 fvmptssdm 5570 elfvmptrab1 5580 fvimacnvi 5599 elpreima 5604 ofrfval 6058 ofvalg 6059 off 6062 offres 6103 eqopi 6140 op1steq 6147 dfoprab4 6160 f1od2 6203 reldmtpos 6221 smores3 6261 smores2 6262 ctssdccl 7076 pinn 7250 indpi 7283 enq0enq 7372 preqlu 7413 elinp 7415 prop 7416 elnp1st2nd 7417 prarloclem5 7441 cauappcvgprlemladd 7599 peano5nnnn 7833 nnindnn 7834 recn 7886 rexr 7944 peano5nni 8860 nnre 8864 nncn 8865 nnind 8873 nnnn0 9121 nn0re 9123 nn0cn 9124 nn0xnn0 9181 nnz 9210 nn0z 9211 nnq 9571 qcn 9572 rpre 9596 iccshftri 9931 iccshftli 9933 iccdili 9935 icccntri 9937 fzval2 9947 fzelp1 10009 4fvwrd4 10075 elfzo1 10125 expcllem 10466 expcl2lemap 10467 m1expcl2 10477 bcm1k 10673 bcpasc 10679 cau3lem 11056 climconst2 11232 fsum3 11328 binomlem 11424 fprodge1 11580 cos12dec 11708 dvdsflip 11789 infssuzcldc 11884 isprm3 12050 phimullem 12157 prmdiveq 12168 structcnvcnv 12410 fvsetsid 12428 tgval2 12691 qtopbasss 13161 dedekindicc 13251 ivthinc 13261 ivthdec 13262 cosz12 13341 cos0pilt1 13413 ioocosf1o 13415 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |