| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssel 3178 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sselii 3181 sselid 3182 elun1 3331 elun2 3332 finds 4637 finds2 4638 issref 5053 2elresin 5372 fvun1 5630 fvmptssdm 5649 elfvmptrab1 5659 fvimacnvi 5679 elpreima 5684 ofrfval 6148 ofvalg 6149 off 6152 offres 6201 eqopi 6239 op1steq 6246 dfoprab4 6259 f1od2 6302 reldmtpos 6320 smores3 6360 smores2 6361 ctssdccl 7186 pinn 7393 indpi 7426 enq0enq 7515 preqlu 7556 elinp 7558 prop 7559 elnp1st2nd 7560 prarloclem5 7584 cauappcvgprlemladd 7742 peano5nnnn 7976 nnindnn 7977 recn 8029 rexr 8089 peano5nni 9010 nnre 9014 nncn 9015 nnind 9023 nnnn0 9273 nn0re 9275 nn0cn 9276 nn0xnn0 9333 nnz 9362 nn0z 9363 nnq 9724 qcn 9725 rpre 9752 iccshftri 10087 iccshftli 10089 iccdili 10091 icccntri 10093 fzval2 10103 fzelp1 10166 4fvwrd4 10232 elfzo1 10283 infssuzcldc 10342 expcllem 10659 expcl2lemap 10660 m1expcl2 10670 bcm1k 10869 bcpasc 10875 wrdv 10968 cau3lem 11296 climconst2 11473 fsum3 11569 binomlem 11665 fprodge1 11821 cos12dec 11950 dvdsflip 12033 isprm3 12311 phimullem 12418 prmdiveq 12429 structcnvcnv 12719 fvsetsid 12737 ptex 12966 nmzsubg 13416 nmznsg 13419 nzrring 13815 lringnzr 13825 rege0subm 14216 znrrg 14292 tgval2 14371 qtopbasss 14841 dedekindicc 14953 ivthinc 14963 ivthdec 14964 dvply2 15087 cosz12 15100 cos0pilt1 15172 ioocosf1o 15174 mpodvdsmulf1o 15310 fsumdvdsmul 15311 lgsquadlemofi 15401 lgsquadlem1 15402 lgsquadlem2 15403 exmidsbthrlem 15753 |
| Copyright terms: Public domain | W3C validator |