| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssel 3218 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sselii 3221 sselid 3222 elun1 3371 elun2 3372 elopabr 4370 elopabran 4371 finds 4691 finds2 4692 issref 5110 2elresin 5433 fvun1 5699 fvmptssdm 5718 elfvmptrab1 5728 fvimacnvi 5748 elpreima 5753 ofrfval 6225 ofvalg 6226 off 6229 offres 6278 eqopi 6316 op1steq 6323 dfoprab4 6336 f1od2 6379 reldmtpos 6397 smores3 6437 smores2 6438 ctssdccl 7274 pinn 7492 indpi 7525 enq0enq 7614 preqlu 7655 elinp 7657 prop 7658 elnp1st2nd 7659 prarloclem5 7683 cauappcvgprlemladd 7841 peano5nnnn 8075 nnindnn 8076 recn 8128 rexr 8188 peano5nni 9109 nnre 9113 nncn 9114 nnind 9122 nnnn0 9372 nn0re 9374 nn0cn 9375 nn0xnn0 9432 nnz 9461 nn0z 9462 nnq 9824 qcn 9825 rpre 9852 iccshftri 10187 iccshftli 10189 iccdili 10191 icccntri 10193 fzval2 10203 fzelp1 10266 4fvwrd4 10332 elfzo1 10386 infssuzcldc 10450 expcllem 10767 expcl2lemap 10768 m1expcl2 10778 bcm1k 10977 bcpasc 10983 wrdv 11082 ccatclab 11124 pfxfv0 11219 pfxfvlsw 11222 cau3lem 11620 climconst2 11797 fsum3 11893 binomlem 11989 fprodge1 12145 cos12dec 12274 dvdsflip 12357 isprm3 12635 phimullem 12742 prmdiveq 12753 structcnvcnv 13043 fvsetsid 13061 ptex 13292 nmzsubg 13742 nmznsg 13745 nzrring 14141 lringnzr 14151 rege0subm 14542 znrrg 14618 tgval2 14719 qtopbasss 15189 dedekindicc 15301 ivthinc 15311 ivthdec 15312 dvply2 15435 cosz12 15448 cos0pilt1 15520 ioocosf1o 15522 mpodvdsmulf1o 15658 fsumdvdsmul 15659 lgsquadlemofi 15749 lgsquadlem1 15750 lgsquadlem2 15751 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |