| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssel 3186 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sselii 3189 sselid 3190 elun1 3339 elun2 3340 finds 4647 finds2 4648 issref 5064 2elresin 5386 fvun1 5644 fvmptssdm 5663 elfvmptrab1 5673 fvimacnvi 5693 elpreima 5698 ofrfval 6166 ofvalg 6167 off 6170 offres 6219 eqopi 6257 op1steq 6264 dfoprab4 6277 f1od2 6320 reldmtpos 6338 smores3 6378 smores2 6379 ctssdccl 7212 pinn 7421 indpi 7454 enq0enq 7543 preqlu 7584 elinp 7586 prop 7587 elnp1st2nd 7588 prarloclem5 7612 cauappcvgprlemladd 7770 peano5nnnn 8004 nnindnn 8005 recn 8057 rexr 8117 peano5nni 9038 nnre 9042 nncn 9043 nnind 9051 nnnn0 9301 nn0re 9303 nn0cn 9304 nn0xnn0 9361 nnz 9390 nn0z 9391 nnq 9753 qcn 9754 rpre 9781 iccshftri 10116 iccshftli 10118 iccdili 10120 icccntri 10122 fzval2 10132 fzelp1 10195 4fvwrd4 10261 elfzo1 10312 infssuzcldc 10376 expcllem 10693 expcl2lemap 10694 m1expcl2 10704 bcm1k 10903 bcpasc 10909 wrdv 11008 ccatclab 11048 cau3lem 11367 climconst2 11544 fsum3 11640 binomlem 11736 fprodge1 11892 cos12dec 12021 dvdsflip 12104 isprm3 12382 phimullem 12489 prmdiveq 12500 structcnvcnv 12790 fvsetsid 12808 ptex 13038 nmzsubg 13488 nmznsg 13491 nzrring 13887 lringnzr 13897 rege0subm 14288 znrrg 14364 tgval2 14465 qtopbasss 14935 dedekindicc 15047 ivthinc 15057 ivthdec 15058 dvply2 15181 cosz12 15194 cos0pilt1 15266 ioocosf1o 15268 mpodvdsmulf1o 15404 fsumdvdsmul 15405 lgsquadlemofi 15495 lgsquadlem1 15496 lgsquadlem2 15497 exmidsbthrlem 15894 |
| Copyright terms: Public domain | W3C validator |