![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseli | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssel 3174 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sselii 3177 sselid 3178 elun1 3327 elun2 3328 finds 4633 finds2 4634 issref 5049 2elresin 5366 fvun1 5624 fvmptssdm 5643 elfvmptrab1 5653 fvimacnvi 5673 elpreima 5678 ofrfval 6141 ofvalg 6142 off 6145 offres 6189 eqopi 6227 op1steq 6234 dfoprab4 6247 f1od2 6290 reldmtpos 6308 smores3 6348 smores2 6349 ctssdccl 7172 pinn 7371 indpi 7404 enq0enq 7493 preqlu 7534 elinp 7536 prop 7537 elnp1st2nd 7538 prarloclem5 7562 cauappcvgprlemladd 7720 peano5nnnn 7954 nnindnn 7955 recn 8007 rexr 8067 peano5nni 8987 nnre 8991 nncn 8992 nnind 9000 nnnn0 9250 nn0re 9252 nn0cn 9253 nn0xnn0 9310 nnz 9339 nn0z 9340 nnq 9701 qcn 9702 rpre 9729 iccshftri 10064 iccshftli 10066 iccdili 10068 icccntri 10070 fzval2 10080 fzelp1 10143 4fvwrd4 10209 elfzo1 10260 expcllem 10624 expcl2lemap 10625 m1expcl2 10635 bcm1k 10834 bcpasc 10840 wrdv 10933 cau3lem 11261 climconst2 11437 fsum3 11533 binomlem 11629 fprodge1 11785 cos12dec 11914 dvdsflip 11996 infssuzcldc 12091 isprm3 12259 phimullem 12366 prmdiveq 12377 structcnvcnv 12637 fvsetsid 12655 ptex 12878 nmzsubg 13283 nmznsg 13286 nzrring 13682 lringnzr 13692 rege0subm 14083 znrrg 14159 tgval2 14230 qtopbasss 14700 dedekindicc 14812 ivthinc 14822 ivthdec 14823 cosz12 14956 cos0pilt1 15028 ioocosf1o 15030 lgsquadlemofi 15233 lgsquadlem1 15234 lgsquadlem2 15235 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |