| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssel 3178 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sselii 3181 sselid 3182 elun1 3331 elun2 3332 finds 4637 finds2 4638 issref 5053 2elresin 5372 fvun1 5630 fvmptssdm 5649 elfvmptrab1 5659 fvimacnvi 5679 elpreima 5684 ofrfval 6148 ofvalg 6149 off 6152 offres 6201 eqopi 6239 op1steq 6246 dfoprab4 6259 f1od2 6302 reldmtpos 6320 smores3 6360 smores2 6361 ctssdccl 7186 pinn 7395 indpi 7428 enq0enq 7517 preqlu 7558 elinp 7560 prop 7561 elnp1st2nd 7562 prarloclem5 7586 cauappcvgprlemladd 7744 peano5nnnn 7978 nnindnn 7979 recn 8031 rexr 8091 peano5nni 9012 nnre 9016 nncn 9017 nnind 9025 nnnn0 9275 nn0re 9277 nn0cn 9278 nn0xnn0 9335 nnz 9364 nn0z 9365 nnq 9726 qcn 9727 rpre 9754 iccshftri 10089 iccshftli 10091 iccdili 10093 icccntri 10095 fzval2 10105 fzelp1 10168 4fvwrd4 10234 elfzo1 10285 infssuzcldc 10344 expcllem 10661 expcl2lemap 10662 m1expcl2 10672 bcm1k 10871 bcpasc 10877 wrdv 10970 cau3lem 11298 climconst2 11475 fsum3 11571 binomlem 11667 fprodge1 11823 cos12dec 11952 dvdsflip 12035 isprm3 12313 phimullem 12420 prmdiveq 12431 structcnvcnv 12721 fvsetsid 12739 ptex 12968 nmzsubg 13418 nmznsg 13421 nzrring 13817 lringnzr 13827 rege0subm 14218 znrrg 14294 tgval2 14395 qtopbasss 14865 dedekindicc 14977 ivthinc 14987 ivthdec 14988 dvply2 15111 cosz12 15124 cos0pilt1 15196 ioocosf1o 15198 mpodvdsmulf1o 15334 fsumdvdsmul 15335 lgsquadlemofi 15425 lgsquadlem1 15426 lgsquadlem2 15427 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |