| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssel 3191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: sselii 3194 sselid 3195 elun1 3344 elun2 3345 finds 4656 finds2 4657 issref 5074 2elresin 5396 fvun1 5658 fvmptssdm 5677 elfvmptrab1 5687 fvimacnvi 5707 elpreima 5712 ofrfval 6180 ofvalg 6181 off 6184 offres 6233 eqopi 6271 op1steq 6278 dfoprab4 6291 f1od2 6334 reldmtpos 6352 smores3 6392 smores2 6393 ctssdccl 7228 pinn 7442 indpi 7475 enq0enq 7564 preqlu 7605 elinp 7607 prop 7608 elnp1st2nd 7609 prarloclem5 7633 cauappcvgprlemladd 7791 peano5nnnn 8025 nnindnn 8026 recn 8078 rexr 8138 peano5nni 9059 nnre 9063 nncn 9064 nnind 9072 nnnn0 9322 nn0re 9324 nn0cn 9325 nn0xnn0 9382 nnz 9411 nn0z 9412 nnq 9774 qcn 9775 rpre 9802 iccshftri 10137 iccshftli 10139 iccdili 10141 icccntri 10143 fzval2 10153 fzelp1 10216 4fvwrd4 10282 elfzo1 10336 infssuzcldc 10400 expcllem 10717 expcl2lemap 10718 m1expcl2 10728 bcm1k 10927 bcpasc 10933 wrdv 11032 ccatclab 11073 pfxfv0 11168 pfxfvlsw 11171 cau3lem 11500 climconst2 11677 fsum3 11773 binomlem 11869 fprodge1 12025 cos12dec 12154 dvdsflip 12237 isprm3 12515 phimullem 12622 prmdiveq 12633 structcnvcnv 12923 fvsetsid 12941 ptex 13171 nmzsubg 13621 nmznsg 13624 nzrring 14020 lringnzr 14030 rege0subm 14421 znrrg 14497 tgval2 14598 qtopbasss 15068 dedekindicc 15180 ivthinc 15190 ivthdec 15191 dvply2 15314 cosz12 15327 cos0pilt1 15399 ioocosf1o 15401 mpodvdsmulf1o 15537 fsumdvdsmul 15538 lgsquadlemofi 15628 lgsquadlem1 15629 lgsquadlem2 15630 exmidsbthrlem 16102 |
| Copyright terms: Public domain | W3C validator |