Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseli | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssel 3141 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sselii 3144 sselid 3145 elun1 3294 elun2 3295 finds 4584 finds2 4585 issref 4993 2elresin 5309 fvun1 5562 fvmptssdm 5580 elfvmptrab1 5590 fvimacnvi 5610 elpreima 5615 ofrfval 6069 ofvalg 6070 off 6073 offres 6114 eqopi 6151 op1steq 6158 dfoprab4 6171 f1od2 6214 reldmtpos 6232 smores3 6272 smores2 6273 ctssdccl 7088 pinn 7271 indpi 7304 enq0enq 7393 preqlu 7434 elinp 7436 prop 7437 elnp1st2nd 7438 prarloclem5 7462 cauappcvgprlemladd 7620 peano5nnnn 7854 nnindnn 7855 recn 7907 rexr 7965 peano5nni 8881 nnre 8885 nncn 8886 nnind 8894 nnnn0 9142 nn0re 9144 nn0cn 9145 nn0xnn0 9202 nnz 9231 nn0z 9232 nnq 9592 qcn 9593 rpre 9617 iccshftri 9952 iccshftli 9954 iccdili 9956 icccntri 9958 fzval2 9968 fzelp1 10030 4fvwrd4 10096 elfzo1 10146 expcllem 10487 expcl2lemap 10488 m1expcl2 10498 bcm1k 10694 bcpasc 10700 cau3lem 11078 climconst2 11254 fsum3 11350 binomlem 11446 fprodge1 11602 cos12dec 11730 dvdsflip 11811 infssuzcldc 11906 isprm3 12072 phimullem 12179 prmdiveq 12190 structcnvcnv 12432 fvsetsid 12450 tgval2 12845 qtopbasss 13315 dedekindicc 13405 ivthinc 13415 ivthdec 13416 cosz12 13495 cos0pilt1 13567 ioocosf1o 13569 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |