| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssel 3186 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sselii 3189 sselid 3190 elun1 3339 elun2 3340 finds 4646 finds2 4647 issref 5062 2elresin 5381 fvun1 5639 fvmptssdm 5658 elfvmptrab1 5668 fvimacnvi 5688 elpreima 5693 ofrfval 6157 ofvalg 6158 off 6161 offres 6210 eqopi 6248 op1steq 6255 dfoprab4 6268 f1od2 6311 reldmtpos 6329 smores3 6369 smores2 6370 ctssdccl 7195 pinn 7404 indpi 7437 enq0enq 7526 preqlu 7567 elinp 7569 prop 7570 elnp1st2nd 7571 prarloclem5 7595 cauappcvgprlemladd 7753 peano5nnnn 7987 nnindnn 7988 recn 8040 rexr 8100 peano5nni 9021 nnre 9025 nncn 9026 nnind 9034 nnnn0 9284 nn0re 9286 nn0cn 9287 nn0xnn0 9344 nnz 9373 nn0z 9374 nnq 9736 qcn 9737 rpre 9764 iccshftri 10099 iccshftli 10101 iccdili 10103 icccntri 10105 fzval2 10115 fzelp1 10178 4fvwrd4 10244 elfzo1 10295 infssuzcldc 10359 expcllem 10676 expcl2lemap 10677 m1expcl2 10687 bcm1k 10886 bcpasc 10892 wrdv 10985 ccatclab 11025 cau3lem 11344 climconst2 11521 fsum3 11617 binomlem 11713 fprodge1 11869 cos12dec 11998 dvdsflip 12081 isprm3 12359 phimullem 12466 prmdiveq 12477 structcnvcnv 12767 fvsetsid 12785 ptex 13014 nmzsubg 13464 nmznsg 13467 nzrring 13863 lringnzr 13873 rege0subm 14264 znrrg 14340 tgval2 14441 qtopbasss 14911 dedekindicc 15023 ivthinc 15033 ivthdec 15034 dvply2 15157 cosz12 15170 cos0pilt1 15242 ioocosf1o 15244 mpodvdsmulf1o 15380 fsumdvdsmul 15381 lgsquadlemofi 15471 lgsquadlem1 15472 lgsquadlem2 15473 exmidsbthrlem 15825 |
| Copyright terms: Public domain | W3C validator |