![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseli | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
sseli | ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseli.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssel 3173 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sselii 3176 sselid 3177 elun1 3326 elun2 3327 finds 4632 finds2 4633 issref 5048 2elresin 5365 fvun1 5623 fvmptssdm 5642 elfvmptrab1 5652 fvimacnvi 5672 elpreima 5677 ofrfval 6139 ofvalg 6140 off 6143 offres 6187 eqopi 6225 op1steq 6232 dfoprab4 6245 f1od2 6288 reldmtpos 6306 smores3 6346 smores2 6347 ctssdccl 7170 pinn 7369 indpi 7402 enq0enq 7491 preqlu 7532 elinp 7534 prop 7535 elnp1st2nd 7536 prarloclem5 7560 cauappcvgprlemladd 7718 peano5nnnn 7952 nnindnn 7953 recn 8005 rexr 8065 peano5nni 8985 nnre 8989 nncn 8990 nnind 8998 nnnn0 9247 nn0re 9249 nn0cn 9250 nn0xnn0 9307 nnz 9336 nn0z 9337 nnq 9698 qcn 9699 rpre 9726 iccshftri 10061 iccshftli 10063 iccdili 10065 icccntri 10067 fzval2 10077 fzelp1 10140 4fvwrd4 10206 elfzo1 10257 expcllem 10621 expcl2lemap 10622 m1expcl2 10632 bcm1k 10831 bcpasc 10837 wrdv 10930 cau3lem 11258 climconst2 11434 fsum3 11530 binomlem 11626 fprodge1 11782 cos12dec 11911 dvdsflip 11993 infssuzcldc 12088 isprm3 12256 phimullem 12363 prmdiveq 12374 structcnvcnv 12634 fvsetsid 12652 ptex 12875 nmzsubg 13280 nmznsg 13283 nzrring 13679 lringnzr 13689 rege0subm 14072 znrrg 14148 tgval2 14219 qtopbasss 14689 dedekindicc 14787 ivthinc 14797 ivthdec 14798 cosz12 14915 cos0pilt1 14987 ioocosf1o 14989 lgsquadlem1 15191 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |