| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lringnz | GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringnz.1 | ⊢ 1 = (1r‘𝑅) |
| lringnz.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| lringnz | ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lringnzr 13725 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
| 2 | lringnz.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 3 | lringnz.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | nzrnz 13714 | . 2 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ‘cfv 5258 0gc0g 12903 1rcur 13491 NzRingcnzr 13711 LRingclring 13722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-nzr 13712 df-lring 13723 |
| This theorem is referenced by: aprap 13818 |
| Copyright terms: Public domain | W3C validator |