ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnz GIF version

Theorem lringnz 14001
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1 1 = (1r𝑅)
lringnz.2 0 = (0g𝑅)
Assertion
Ref Expression
lringnz (𝑅 ∈ LRing → 10 )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 13999 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 lringnz.1 . . 3 1 = (1r𝑅)
3 lringnz.2 . . 3 0 = (0g𝑅)
42, 3nzrnz 13988 . 2 (𝑅 ∈ NzRing → 10 )
51, 4syl 14 1 (𝑅 ∈ LRing → 10 )
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wne 2377  cfv 5276  0gc0g 13132  1rcur 13765  NzRingcnzr 13985  LRingclring 13996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-iota 5237  df-fv 5284  df-nzr 13986  df-lring 13997
This theorem is referenced by:  aprap  14092
  Copyright terms: Public domain W3C validator