| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lringnz | GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringnz.1 | ⊢ 1 = (1r‘𝑅) |
| lringnz.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| lringnz | ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lringnzr 14122 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
| 2 | lringnz.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 3 | lringnz.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | nzrnz 14111 | . 2 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 ‘cfv 5294 0gc0g 13255 1rcur 13888 NzRingcnzr 14108 LRingclring 14119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-nzr 14109 df-lring 14120 |
| This theorem is referenced by: aprap 14215 |
| Copyright terms: Public domain | W3C validator |