ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcotr GIF version

Theorem aprcotr 13917
Description: The apartness relation given by df-apr 13913 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprcotr.b (𝜑𝐵 = (Base‘𝑅))
aprcotr.ap (𝜑# = (#r𝑅))
aprcotr.r (𝜑𝑅 ∈ LRing)
aprcotr.x (𝜑𝑋𝐵)
aprcotr.y (𝜑𝑌𝐵)
aprcotr.z (𝜑𝑍𝐵)
Assertion
Ref Expression
aprcotr (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))

Proof of Theorem aprcotr
StepHypRef Expression
1 aprcotr.b . . . . 5 (𝜑𝐵 = (Base‘𝑅))
21adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → 𝐵 = (Base‘𝑅))
3 eqidd 2197 . . . 4 ((𝜑𝑋 # 𝑌) → (Unit‘𝑅) = (Unit‘𝑅))
4 eqidd 2197 . . . 4 ((𝜑𝑋 # 𝑌) → (+g𝑅) = (+g𝑅))
5 aprcotr.r . . . . 5 (𝜑𝑅 ∈ LRing)
65adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → 𝑅 ∈ LRing)
7 lringring 13826 . . . . . . . . 9 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
85, 7syl 14 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98ringgrpd 13637 . . . . . . 7 (𝜑𝑅 ∈ Grp)
10 aprcotr.x . . . . . . . 8 (𝜑𝑋𝐵)
1110, 1eleqtrd 2275 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
12 aprcotr.z . . . . . . . 8 (𝜑𝑍𝐵)
1312, 1eleqtrd 2275 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝑅))
14 aprcotr.y . . . . . . . 8 (𝜑𝑌𝐵)
1514, 1eleqtrd 2275 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑅))
16 eqid 2196 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2196 . . . . . . . 8 (+g𝑅) = (+g𝑅)
18 eqid 2196 . . . . . . . 8 (-g𝑅) = (-g𝑅)
1916, 17, 18grpnpncan 13297 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅))) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
209, 11, 13, 15, 19syl13anc 1251 . . . . . 6 (𝜑 → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
2120adantr 276 . . . . 5 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
22 aprcotr.ap . . . . . . 7 (𝜑# = (#r𝑅))
23 eqidd 2197 . . . . . . 7 (𝜑 → (-g𝑅) = (-g𝑅))
24 eqidd 2197 . . . . . . 7 (𝜑 → (Unit‘𝑅) = (Unit‘𝑅))
251, 22, 23, 24, 8, 10, 14aprval 13914 . . . . . 6 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
2625biimpa 296 . . . . 5 ((𝜑𝑋 # 𝑌) → (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅))
2721, 26eqeltrd 2273 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) ∈ (Unit‘𝑅))
2816, 18grpsubcl 13282 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(-g𝑅)𝑍) ∈ (Base‘𝑅))
299, 11, 13, 28syl3anc 1249 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑍) ∈ (Base‘𝑅))
3029, 1eleqtrrd 2276 . . . . 5 (𝜑 → (𝑋(-g𝑅)𝑍) ∈ 𝐵)
3130adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → (𝑋(-g𝑅)𝑍) ∈ 𝐵)
3216, 18grpsubcl 13282 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑍(-g𝑅)𝑌) ∈ (Base‘𝑅))
339, 13, 15, 32syl3anc 1249 . . . . . 6 (𝜑 → (𝑍(-g𝑅)𝑌) ∈ (Base‘𝑅))
3433, 1eleqtrrd 2276 . . . . 5 (𝜑 → (𝑍(-g𝑅)𝑌) ∈ 𝐵)
3534adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → (𝑍(-g𝑅)𝑌) ∈ 𝐵)
362, 3, 4, 6, 27, 31, 35lringuplu 13828 . . 3 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
371, 22, 23, 24, 8, 10, 12aprval 13914 . . . . . 6 (𝜑 → (𝑋 # 𝑍 ↔ (𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅)))
3837biimprd 158 . . . . 5 (𝜑 → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍))
3938adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍))
401, 22, 23, 24, 8, 12, 14aprval 13914 . . . . . 6 (𝜑 → (𝑍 # 𝑌 ↔ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
411, 22, 8, 12, 14aprsym 13916 . . . . . 6 (𝜑 → (𝑍 # 𝑌𝑌 # 𝑍))
4240, 41sylbird 170 . . . . 5 (𝜑 → ((𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍))
4342adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍))
4439, 43orim12d 787 . . 3 ((𝜑𝑋 # 𝑌) → (((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)) → (𝑋 # 𝑍𝑌 # 𝑍)))
4536, 44mpd 13 . 2 ((𝜑𝑋 # 𝑌) → (𝑋 # 𝑍𝑌 # 𝑍))
4645ex 115 1 (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Grpcgrp 13202  -gcsg 13204  Ringcrg 13628  Unitcui 13719  LRingclring 13822  #rcapr 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-dvr 13764  df-nzr 13812  df-lring 13823  df-apr 13913
This theorem is referenced by:  aprap  13918
  Copyright terms: Public domain W3C validator