ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcotr GIF version

Theorem aprcotr 13781
Description: The apartness relation given by df-apr 13777 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprcotr.b (𝜑𝐵 = (Base‘𝑅))
aprcotr.ap (𝜑# = (#r𝑅))
aprcotr.r (𝜑𝑅 ∈ LRing)
aprcotr.x (𝜑𝑋𝐵)
aprcotr.y (𝜑𝑌𝐵)
aprcotr.z (𝜑𝑍𝐵)
Assertion
Ref Expression
aprcotr (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))

Proof of Theorem aprcotr
StepHypRef Expression
1 aprcotr.b . . . . 5 (𝜑𝐵 = (Base‘𝑅))
21adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → 𝐵 = (Base‘𝑅))
3 eqidd 2194 . . . 4 ((𝜑𝑋 # 𝑌) → (Unit‘𝑅) = (Unit‘𝑅))
4 eqidd 2194 . . . 4 ((𝜑𝑋 # 𝑌) → (+g𝑅) = (+g𝑅))
5 aprcotr.r . . . . 5 (𝜑𝑅 ∈ LRing)
65adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → 𝑅 ∈ LRing)
7 lringring 13690 . . . . . . . . 9 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
85, 7syl 14 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98ringgrpd 13501 . . . . . . 7 (𝜑𝑅 ∈ Grp)
10 aprcotr.x . . . . . . . 8 (𝜑𝑋𝐵)
1110, 1eleqtrd 2272 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
12 aprcotr.z . . . . . . . 8 (𝜑𝑍𝐵)
1312, 1eleqtrd 2272 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝑅))
14 aprcotr.y . . . . . . . 8 (𝜑𝑌𝐵)
1514, 1eleqtrd 2272 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑅))
16 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2193 . . . . . . . 8 (+g𝑅) = (+g𝑅)
18 eqid 2193 . . . . . . . 8 (-g𝑅) = (-g𝑅)
1916, 17, 18grpnpncan 13167 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅))) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
209, 11, 13, 15, 19syl13anc 1251 . . . . . 6 (𝜑 → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
2120adantr 276 . . . . 5 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
22 aprcotr.ap . . . . . . 7 (𝜑# = (#r𝑅))
23 eqidd 2194 . . . . . . 7 (𝜑 → (-g𝑅) = (-g𝑅))
24 eqidd 2194 . . . . . . 7 (𝜑 → (Unit‘𝑅) = (Unit‘𝑅))
251, 22, 23, 24, 8, 10, 14aprval 13778 . . . . . 6 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
2625biimpa 296 . . . . 5 ((𝜑𝑋 # 𝑌) → (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅))
2721, 26eqeltrd 2270 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) ∈ (Unit‘𝑅))
2816, 18grpsubcl 13152 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(-g𝑅)𝑍) ∈ (Base‘𝑅))
299, 11, 13, 28syl3anc 1249 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑍) ∈ (Base‘𝑅))
3029, 1eleqtrrd 2273 . . . . 5 (𝜑 → (𝑋(-g𝑅)𝑍) ∈ 𝐵)
3130adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → (𝑋(-g𝑅)𝑍) ∈ 𝐵)
3216, 18grpsubcl 13152 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑍(-g𝑅)𝑌) ∈ (Base‘𝑅))
339, 13, 15, 32syl3anc 1249 . . . . . 6 (𝜑 → (𝑍(-g𝑅)𝑌) ∈ (Base‘𝑅))
3433, 1eleqtrrd 2273 . . . . 5 (𝜑 → (𝑍(-g𝑅)𝑌) ∈ 𝐵)
3534adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → (𝑍(-g𝑅)𝑌) ∈ 𝐵)
362, 3, 4, 6, 27, 31, 35lringuplu 13692 . . 3 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
371, 22, 23, 24, 8, 10, 12aprval 13778 . . . . . 6 (𝜑 → (𝑋 # 𝑍 ↔ (𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅)))
3837biimprd 158 . . . . 5 (𝜑 → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍))
3938adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍))
401, 22, 23, 24, 8, 12, 14aprval 13778 . . . . . 6 (𝜑 → (𝑍 # 𝑌 ↔ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
411, 22, 8, 12, 14aprsym 13780 . . . . . 6 (𝜑 → (𝑍 # 𝑌𝑌 # 𝑍))
4240, 41sylbird 170 . . . . 5 (𝜑 → ((𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍))
4342adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍))
4439, 43orim12d 787 . . 3 ((𝜑𝑋 # 𝑌) → (((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)) → (𝑋 # 𝑍𝑌 # 𝑍)))
4536, 44mpd 13 . 2 ((𝜑𝑋 # 𝑌) → (𝑋 # 𝑍𝑌 # 𝑍))
4645ex 115 1 (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072  -gcsg 13074  Ringcrg 13492  Unitcui 13583  LRingclring 13686  #rcapr 13776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617  df-dvr 13628  df-nzr 13676  df-lring 13687  df-apr 13777
This theorem is referenced by:  aprap  13782
  Copyright terms: Public domain W3C validator