Step | Hyp | Ref
| Expression |
1 | | aprcotr.b |
. . . . 5
β’ (π β π΅ = (Baseβπ
)) |
2 | 1 | adantr 276 |
. . . 4
β’ ((π β§ π # π) β π΅ = (Baseβπ
)) |
3 | | eqidd 2178 |
. . . 4
β’ ((π β§ π # π) β (Unitβπ
) = (Unitβπ
)) |
4 | | eqidd 2178 |
. . . 4
β’ ((π β§ π # π) β (+gβπ
) = (+gβπ
)) |
5 | | aprcotr.r |
. . . . 5
β’ (π β π
β LRing) |
6 | 5 | adantr 276 |
. . . 4
β’ ((π β§ π # π) β π
β LRing) |
7 | | lringring 13340 |
. . . . . . . . 9
β’ (π
β LRing β π
β Ring) |
8 | 5, 7 | syl 14 |
. . . . . . . 8
β’ (π β π
β Ring) |
9 | 8 | ringgrpd 13193 |
. . . . . . 7
β’ (π β π
β Grp) |
10 | | aprcotr.x |
. . . . . . . 8
β’ (π β π β π΅) |
11 | 10, 1 | eleqtrd 2256 |
. . . . . . 7
β’ (π β π β (Baseβπ
)) |
12 | | aprcotr.z |
. . . . . . . 8
β’ (π β π β π΅) |
13 | 12, 1 | eleqtrd 2256 |
. . . . . . 7
β’ (π β π β (Baseβπ
)) |
14 | | aprcotr.y |
. . . . . . . 8
β’ (π β π β π΅) |
15 | 14, 1 | eleqtrd 2256 |
. . . . . . 7
β’ (π β π β (Baseβπ
)) |
16 | | eqid 2177 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
17 | | eqid 2177 |
. . . . . . . 8
β’
(+gβπ
) = (+gβπ
) |
18 | | eqid 2177 |
. . . . . . . 8
β’
(-gβπ
) = (-gβπ
) |
19 | 16, 17, 18 | grpnpncan 12970 |
. . . . . . 7
β’ ((π
β Grp β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π(-gβπ
)π)(+gβπ
)(π(-gβπ
)π)) = (π(-gβπ
)π)) |
20 | 9, 11, 13, 15, 19 | syl13anc 1240 |
. . . . . 6
β’ (π β ((π(-gβπ
)π)(+gβπ
)(π(-gβπ
)π)) = (π(-gβπ
)π)) |
21 | 20 | adantr 276 |
. . . . 5
β’ ((π β§ π # π) β ((π(-gβπ
)π)(+gβπ
)(π(-gβπ
)π)) = (π(-gβπ
)π)) |
22 | | aprcotr.ap |
. . . . . . 7
β’ (π β # =
(#rβπ
)) |
23 | | eqidd 2178 |
. . . . . . 7
β’ (π β (-gβπ
) = (-gβπ
)) |
24 | | eqidd 2178 |
. . . . . . 7
β’ (π β (Unitβπ
) = (Unitβπ
)) |
25 | 1, 22, 23, 24, 8, 10, 14 | aprval 13377 |
. . . . . 6
β’ (π β (π # π β (π(-gβπ
)π) β (Unitβπ
))) |
26 | 25 | biimpa 296 |
. . . . 5
β’ ((π β§ π # π) β (π(-gβπ
)π) β (Unitβπ
)) |
27 | 21, 26 | eqeltrd 2254 |
. . . 4
β’ ((π β§ π # π) β ((π(-gβπ
)π)(+gβπ
)(π(-gβπ
)π)) β (Unitβπ
)) |
28 | 16, 18 | grpsubcl 12955 |
. . . . . . 7
β’ ((π
β Grp β§ π β (Baseβπ
) β§ π β (Baseβπ
)) β (π(-gβπ
)π) β (Baseβπ
)) |
29 | 9, 11, 13, 28 | syl3anc 1238 |
. . . . . 6
β’ (π β (π(-gβπ
)π) β (Baseβπ
)) |
30 | 29, 1 | eleqtrrd 2257 |
. . . . 5
β’ (π β (π(-gβπ
)π) β π΅) |
31 | 30 | adantr 276 |
. . . 4
β’ ((π β§ π # π) β (π(-gβπ
)π) β π΅) |
32 | 16, 18 | grpsubcl 12955 |
. . . . . . 7
β’ ((π
β Grp β§ π β (Baseβπ
) β§ π β (Baseβπ
)) β (π(-gβπ
)π) β (Baseβπ
)) |
33 | 9, 13, 15, 32 | syl3anc 1238 |
. . . . . 6
β’ (π β (π(-gβπ
)π) β (Baseβπ
)) |
34 | 33, 1 | eleqtrrd 2257 |
. . . . 5
β’ (π β (π(-gβπ
)π) β π΅) |
35 | 34 | adantr 276 |
. . . 4
β’ ((π β§ π # π) β (π(-gβπ
)π) β π΅) |
36 | 2, 3, 4, 6, 27, 31, 35 | lringuplu 13342 |
. . 3
β’ ((π β§ π # π) β ((π(-gβπ
)π) β (Unitβπ
) β¨ (π(-gβπ
)π) β (Unitβπ
))) |
37 | 1, 22, 23, 24, 8, 10, 12 | aprval 13377 |
. . . . . 6
β’ (π β (π # π β (π(-gβπ
)π) β (Unitβπ
))) |
38 | 37 | biimprd 158 |
. . . . 5
β’ (π β ((π(-gβπ
)π) β (Unitβπ
) β π # π)) |
39 | 38 | adantr 276 |
. . . 4
β’ ((π β§ π # π) β ((π(-gβπ
)π) β (Unitβπ
) β π # π)) |
40 | 1, 22, 23, 24, 8, 12, 14 | aprval 13377 |
. . . . . 6
β’ (π β (π # π β (π(-gβπ
)π) β (Unitβπ
))) |
41 | 1, 22, 8, 12, 14 | aprsym 13379 |
. . . . . 6
β’ (π β (π # π β π # π)) |
42 | 40, 41 | sylbird 170 |
. . . . 5
β’ (π β ((π(-gβπ
)π) β (Unitβπ
) β π # π)) |
43 | 42 | adantr 276 |
. . . 4
β’ ((π β§ π # π) β ((π(-gβπ
)π) β (Unitβπ
) β π # π)) |
44 | 39, 43 | orim12d 786 |
. . 3
β’ ((π β§ π # π) β (((π(-gβπ
)π) β (Unitβπ
) β¨ (π(-gβπ
)π) β (Unitβπ
)) β (π # π β¨ π # π))) |
45 | 36, 44 | mpd 13 |
. 2
β’ ((π β§ π # π) β (π # π β¨ π # π)) |
46 | 45 | ex 115 |
1
β’ (π β (π # π β (π # π β¨ π # π))) |