Proof of Theorem aprcotr
| Step | Hyp | Ref
 | Expression | 
| 1 |   | aprcotr.b | 
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | 
| 2 | 1 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝐵 = (Base‘𝑅)) | 
| 3 |   | eqidd 2197 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (Unit‘𝑅) = (Unit‘𝑅)) | 
| 4 |   | eqidd 2197 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (+g‘𝑅) = (+g‘𝑅)) | 
| 5 |   | aprcotr.r | 
. . . . 5
⊢ (𝜑 → 𝑅 ∈ LRing) | 
| 6 | 5 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝑅 ∈ LRing) | 
| 7 |   | lringring 13750 | 
. . . . . . . . 9
⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) | 
| 8 | 5, 7 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 9 | 8 | ringgrpd 13561 | 
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 10 |   | aprcotr.x | 
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 11 | 10, 1 | eleqtrd 2275 | 
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | 
| 12 |   | aprcotr.z | 
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝐵) | 
| 13 | 12, 1 | eleqtrd 2275 | 
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) | 
| 14 |   | aprcotr.y | 
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 15 | 14, 1 | eleqtrd 2275 | 
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) | 
| 16 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 17 |   | eqid 2196 | 
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 18 |   | eqid 2196 | 
. . . . . . . 8
⊢
(-g‘𝑅) = (-g‘𝑅) | 
| 19 | 16, 17, 18 | grpnpncan 13227 | 
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅))) → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) = (𝑋(-g‘𝑅)𝑌)) | 
| 20 | 9, 11, 13, 15, 19 | syl13anc 1251 | 
. . . . . 6
⊢ (𝜑 → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) = (𝑋(-g‘𝑅)𝑌)) | 
| 21 | 20 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) = (𝑋(-g‘𝑅)𝑌)) | 
| 22 |   | aprcotr.ap | 
. . . . . . 7
⊢ (𝜑 → # =
(#r‘𝑅)) | 
| 23 |   | eqidd 2197 | 
. . . . . . 7
⊢ (𝜑 → (-g‘𝑅) = (-g‘𝑅)) | 
| 24 |   | eqidd 2197 | 
. . . . . . 7
⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | 
| 25 | 1, 22, 23, 24, 8, 10, 14 | aprval 13838 | 
. . . . . 6
⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) | 
| 26 | 25 | biimpa 296 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) | 
| 27 | 21, 26 | eqeltrd 2273 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) | 
| 28 | 16, 18 | grpsubcl 13212 | 
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(-g‘𝑅)𝑍) ∈ (Base‘𝑅)) | 
| 29 | 9, 11, 13, 28 | syl3anc 1249 | 
. . . . . 6
⊢ (𝜑 → (𝑋(-g‘𝑅)𝑍) ∈ (Base‘𝑅)) | 
| 30 | 29, 1 | eleqtrrd 2276 | 
. . . . 5
⊢ (𝜑 → (𝑋(-g‘𝑅)𝑍) ∈ 𝐵) | 
| 31 | 30 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑍) ∈ 𝐵) | 
| 32 | 16, 18 | grpsubcl 13212 | 
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑍(-g‘𝑅)𝑌) ∈ (Base‘𝑅)) | 
| 33 | 9, 13, 15, 32 | syl3anc 1249 | 
. . . . . 6
⊢ (𝜑 → (𝑍(-g‘𝑅)𝑌) ∈ (Base‘𝑅)) | 
| 34 | 33, 1 | eleqtrrd 2276 | 
. . . . 5
⊢ (𝜑 → (𝑍(-g‘𝑅)𝑌) ∈ 𝐵) | 
| 35 | 34 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑍(-g‘𝑅)𝑌) ∈ 𝐵) | 
| 36 | 2, 3, 4, 6, 27, 31, 35 | lringuplu 13752 | 
. . 3
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) | 
| 37 | 1, 22, 23, 24, 8, 10, 12 | aprval 13838 | 
. . . . . 6
⊢ (𝜑 → (𝑋 # 𝑍 ↔ (𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅))) | 
| 38 | 37 | biimprd 158 | 
. . . . 5
⊢ (𝜑 → ((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍)) | 
| 39 | 38 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍)) | 
| 40 | 1, 22, 23, 24, 8, 12, 14 | aprval 13838 | 
. . . . . 6
⊢ (𝜑 → (𝑍 # 𝑌 ↔ (𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) | 
| 41 | 1, 22, 8, 12, 14 | aprsym 13840 | 
. . . . . 6
⊢ (𝜑 → (𝑍 # 𝑌 → 𝑌 # 𝑍)) | 
| 42 | 40, 41 | sylbird 170 | 
. . . . 5
⊢ (𝜑 → ((𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍)) | 
| 43 | 42 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍)) | 
| 44 | 39, 43 | orim12d 787 | 
. . 3
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍))) | 
| 45 | 36, 44 | mpd 13 | 
. 2
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍)) | 
| 46 | 45 | ex 115 | 
1
⊢ (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍))) |