Proof of Theorem aprcotr
Step | Hyp | Ref
| Expression |
1 | | aprcotr.b |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
2 | 1 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝐵 = (Base‘𝑅)) |
3 | | eqidd 2188 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (Unit‘𝑅) = (Unit‘𝑅)) |
4 | | eqidd 2188 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (+g‘𝑅) = (+g‘𝑅)) |
5 | | aprcotr.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ LRing) |
6 | 5 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝑅 ∈ LRing) |
7 | | lringring 13471 |
. . . . . . . . 9
⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
8 | 5, 7 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | 8 | ringgrpd 13314 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
10 | | aprcotr.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 10, 1 | eleqtrd 2266 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
12 | | aprcotr.z |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
13 | 12, 1 | eleqtrd 2266 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) |
14 | | aprcotr.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
15 | 14, 1 | eleqtrd 2266 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
16 | | eqid 2187 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | | eqid 2187 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
18 | | eqid 2187 |
. . . . . . . 8
⊢
(-g‘𝑅) = (-g‘𝑅) |
19 | 16, 17, 18 | grpnpncan 13000 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅))) → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) = (𝑋(-g‘𝑅)𝑌)) |
20 | 9, 11, 13, 15, 19 | syl13anc 1250 |
. . . . . 6
⊢ (𝜑 → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) = (𝑋(-g‘𝑅)𝑌)) |
21 | 20 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) = (𝑋(-g‘𝑅)𝑌)) |
22 | | aprcotr.ap |
. . . . . . 7
⊢ (𝜑 → # =
(#r‘𝑅)) |
23 | | eqidd 2188 |
. . . . . . 7
⊢ (𝜑 → (-g‘𝑅) = (-g‘𝑅)) |
24 | | eqidd 2188 |
. . . . . . 7
⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) |
25 | 1, 22, 23, 24, 8, 10, 14 | aprval 13528 |
. . . . . 6
⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
26 | 25 | biimpa 296 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) |
27 | 21, 26 | eqeltrd 2264 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍)(+g‘𝑅)(𝑍(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
28 | 16, 18 | grpsubcl 12985 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(-g‘𝑅)𝑍) ∈ (Base‘𝑅)) |
29 | 9, 11, 13, 28 | syl3anc 1248 |
. . . . . 6
⊢ (𝜑 → (𝑋(-g‘𝑅)𝑍) ∈ (Base‘𝑅)) |
30 | 29, 1 | eleqtrrd 2267 |
. . . . 5
⊢ (𝜑 → (𝑋(-g‘𝑅)𝑍) ∈ 𝐵) |
31 | 30 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑍) ∈ 𝐵) |
32 | 16, 18 | grpsubcl 12985 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑍(-g‘𝑅)𝑌) ∈ (Base‘𝑅)) |
33 | 9, 13, 15, 32 | syl3anc 1248 |
. . . . . 6
⊢ (𝜑 → (𝑍(-g‘𝑅)𝑌) ∈ (Base‘𝑅)) |
34 | 33, 1 | eleqtrrd 2267 |
. . . . 5
⊢ (𝜑 → (𝑍(-g‘𝑅)𝑌) ∈ 𝐵) |
35 | 34 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑍(-g‘𝑅)𝑌) ∈ 𝐵) |
36 | 2, 3, 4, 6, 27, 31, 35 | lringuplu 13473 |
. . 3
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
37 | 1, 22, 23, 24, 8, 10, 12 | aprval 13528 |
. . . . . 6
⊢ (𝜑 → (𝑋 # 𝑍 ↔ (𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅))) |
38 | 37 | biimprd 158 |
. . . . 5
⊢ (𝜑 → ((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍)) |
39 | 38 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍)) |
40 | 1, 22, 23, 24, 8, 12, 14 | aprval 13528 |
. . . . . 6
⊢ (𝜑 → (𝑍 # 𝑌 ↔ (𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
41 | 1, 22, 8, 12, 14 | aprsym 13530 |
. . . . . 6
⊢ (𝜑 → (𝑍 # 𝑌 → 𝑌 # 𝑍)) |
42 | 40, 41 | sylbird 170 |
. . . . 5
⊢ (𝜑 → ((𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍)) |
43 | 42 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍)) |
44 | 39, 43 | orim12d 787 |
. . 3
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (((𝑋(-g‘𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍))) |
45 | 36, 44 | mpd 13 |
. 2
⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍)) |
46 | 45 | ex 115 |
1
⊢ (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍))) |