ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcotr GIF version

Theorem aprcotr 13784
Description: The apartness relation given by df-apr 13780 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprcotr.b (𝜑𝐵 = (Base‘𝑅))
aprcotr.ap (𝜑# = (#r𝑅))
aprcotr.r (𝜑𝑅 ∈ LRing)
aprcotr.x (𝜑𝑋𝐵)
aprcotr.y (𝜑𝑌𝐵)
aprcotr.z (𝜑𝑍𝐵)
Assertion
Ref Expression
aprcotr (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))

Proof of Theorem aprcotr
StepHypRef Expression
1 aprcotr.b . . . . 5 (𝜑𝐵 = (Base‘𝑅))
21adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → 𝐵 = (Base‘𝑅))
3 eqidd 2194 . . . 4 ((𝜑𝑋 # 𝑌) → (Unit‘𝑅) = (Unit‘𝑅))
4 eqidd 2194 . . . 4 ((𝜑𝑋 # 𝑌) → (+g𝑅) = (+g𝑅))
5 aprcotr.r . . . . 5 (𝜑𝑅 ∈ LRing)
65adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → 𝑅 ∈ LRing)
7 lringring 13693 . . . . . . . . 9 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
85, 7syl 14 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98ringgrpd 13504 . . . . . . 7 (𝜑𝑅 ∈ Grp)
10 aprcotr.x . . . . . . . 8 (𝜑𝑋𝐵)
1110, 1eleqtrd 2272 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
12 aprcotr.z . . . . . . . 8 (𝜑𝑍𝐵)
1312, 1eleqtrd 2272 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝑅))
14 aprcotr.y . . . . . . . 8 (𝜑𝑌𝐵)
1514, 1eleqtrd 2272 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑅))
16 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2193 . . . . . . . 8 (+g𝑅) = (+g𝑅)
18 eqid 2193 . . . . . . . 8 (-g𝑅) = (-g𝑅)
1916, 17, 18grpnpncan 13170 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅))) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
209, 11, 13, 15, 19syl13anc 1251 . . . . . 6 (𝜑 → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
2120adantr 276 . . . . 5 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) = (𝑋(-g𝑅)𝑌))
22 aprcotr.ap . . . . . . 7 (𝜑# = (#r𝑅))
23 eqidd 2194 . . . . . . 7 (𝜑 → (-g𝑅) = (-g𝑅))
24 eqidd 2194 . . . . . . 7 (𝜑 → (Unit‘𝑅) = (Unit‘𝑅))
251, 22, 23, 24, 8, 10, 14aprval 13781 . . . . . 6 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
2625biimpa 296 . . . . 5 ((𝜑𝑋 # 𝑌) → (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅))
2721, 26eqeltrd 2270 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍)(+g𝑅)(𝑍(-g𝑅)𝑌)) ∈ (Unit‘𝑅))
2816, 18grpsubcl 13155 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(-g𝑅)𝑍) ∈ (Base‘𝑅))
299, 11, 13, 28syl3anc 1249 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑍) ∈ (Base‘𝑅))
3029, 1eleqtrrd 2273 . . . . 5 (𝜑 → (𝑋(-g𝑅)𝑍) ∈ 𝐵)
3130adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → (𝑋(-g𝑅)𝑍) ∈ 𝐵)
3216, 18grpsubcl 13155 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑍 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑍(-g𝑅)𝑌) ∈ (Base‘𝑅))
339, 13, 15, 32syl3anc 1249 . . . . . 6 (𝜑 → (𝑍(-g𝑅)𝑌) ∈ (Base‘𝑅))
3433, 1eleqtrrd 2273 . . . . 5 (𝜑 → (𝑍(-g𝑅)𝑌) ∈ 𝐵)
3534adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → (𝑍(-g𝑅)𝑌) ∈ 𝐵)
362, 3, 4, 6, 27, 31, 35lringuplu 13695 . . 3 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
371, 22, 23, 24, 8, 10, 12aprval 13781 . . . . . 6 (𝜑 → (𝑋 # 𝑍 ↔ (𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅)))
3837biimprd 158 . . . . 5 (𝜑 → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍))
3938adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) → 𝑋 # 𝑍))
401, 22, 23, 24, 8, 12, 14aprval 13781 . . . . . 6 (𝜑 → (𝑍 # 𝑌 ↔ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
411, 22, 8, 12, 14aprsym 13783 . . . . . 6 (𝜑 → (𝑍 # 𝑌𝑌 # 𝑍))
4240, 41sylbird 170 . . . . 5 (𝜑 → ((𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍))
4342adantr 276 . . . 4 ((𝜑𝑋 # 𝑌) → ((𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅) → 𝑌 # 𝑍))
4439, 43orim12d 787 . . 3 ((𝜑𝑋 # 𝑌) → (((𝑋(-g𝑅)𝑍) ∈ (Unit‘𝑅) ∨ (𝑍(-g𝑅)𝑌) ∈ (Unit‘𝑅)) → (𝑋 # 𝑍𝑌 # 𝑍)))
4536, 44mpd 13 . 2 ((𝜑𝑋 # 𝑌) → (𝑋 # 𝑍𝑌 # 𝑍))
4645ex 115 1 (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  Grpcgrp 13075  -gcsg 13077  Ringcrg 13495  Unitcui 13586  LRingclring 13689  #rcapr 13779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-dvr 13631  df-nzr 13679  df-lring 13690  df-apr 13780
This theorem is referenced by:  aprap  13785
  Copyright terms: Public domain W3C validator