ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringuplu GIF version

Theorem lringuplu 13695
Description: If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lring.b (𝜑𝐵 = (Base‘𝑅))
lring.u (𝜑𝑈 = (Unit‘𝑅))
lring.p (𝜑+ = (+g𝑅))
lring.l (𝜑𝑅 ∈ LRing)
lring.s (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
lring.x (𝜑𝑋𝐵)
lring.y (𝜑𝑌𝐵)
Assertion
Ref Expression
lringuplu (𝜑 → (𝑋𝑈𝑌𝑈))

Proof of Theorem lringuplu
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lring.l . . . . . . . 8 (𝜑𝑅 ∈ LRing)
2 lringring 13693 . . . . . . . 8 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
31, 2syl 14 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 lring.x . . . . . . . 8 (𝜑𝑋𝐵)
5 lring.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
64, 5eleqtrd 2272 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
7 lring.s . . . . . . . 8 (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
8 lring.u . . . . . . . 8 (𝜑𝑈 = (Unit‘𝑅))
97, 8eleqtrd 2272 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
10 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2193 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
12 eqid 2193 . . . . . . . 8 (/r𝑅) = (/r𝑅)
13 eqid 2193 . . . . . . . 8 (.r𝑅) = (.r𝑅)
1410, 11, 12, 13dvrcan1 13639 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
153, 6, 9, 14syl3anc 1249 . . . . . 6 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
1615adantr 276 . . . . 5 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
173adantr 276 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
18 simpr 110 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
199adantr 276 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
2011, 13unitmulcl 13612 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
2117, 18, 19, 20syl3anc 1249 . . . . 5 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
2216, 21eqeltrrd 2271 . . . 4 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝑅))
238adantr 276 . . . 4 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅))
2422, 23eleqtrrd 2273 . . 3 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋𝑈)
2524orcd 734 . 2 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋𝑈𝑌𝑈))
26 lring.y . . . . . . . 8 (𝜑𝑌𝐵)
2726, 5eleqtrd 2272 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑅))
2810, 11, 12, 13dvrcan1 13639 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
293, 27, 9, 28syl3anc 1249 . . . . . 6 (𝜑 → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
3029adantr 276 . . . . 5 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
313adantr 276 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
32 simpr 110 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
339adantr 276 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
3411, 13unitmulcl 13612 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
3531, 32, 33, 34syl3anc 1249 . . . . 5 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
3630, 35eqeltrrd 2271 . . . 4 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌 ∈ (Unit‘𝑅))
378adantr 276 . . . 4 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅))
3836, 37eleqtrrd 2273 . . 3 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌𝑈)
3938olcd 735 . 2 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋𝑈𝑌𝑈))
40 eqid 2193 . . . . . 6 (+g𝑅) = (+g𝑅)
4110, 11, 40, 12dvrdir 13642 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅))) → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
423, 6, 27, 9, 41syl13anc 1251 . . . 4 (𝜑 → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
43 lring.p . . . . . . 7 (𝜑+ = (+g𝑅))
4443eqcomd 2199 . . . . . 6 (𝜑 → (+g𝑅) = + )
4544oveqd 5936 . . . . 5 (𝜑 → (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌))
463ringgrpd 13504 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4710, 40, 46, 6, 27grpcld 13089 . . . . . 6 (𝜑 → (𝑋(+g𝑅)𝑌) ∈ (Base‘𝑅))
48 eqid 2193 . . . . . . 7 (1r𝑅) = (1r𝑅)
4910, 11, 12, 48dvreq1 13641 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(+g𝑅)𝑌) ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅) ↔ (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌)))
503, 47, 9, 49syl3anc 1249 . . . . 5 (𝜑 → (((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅) ↔ (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌)))
5145, 50mpbird 167 . . . 4 (𝜑 → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅))
5242, 51eqtr3d 2228 . . 3 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅))
53 oveq2 5927 . . . . . 6 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
5453eqeq1d 2202 . . . . 5 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅)))
55 eleq1 2256 . . . . . 6 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (𝑣 ∈ (Unit‘𝑅) ↔ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
5655orbi2d 791 . . . . 5 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))
5754, 56imbi12d 234 . . . 4 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → ((((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))))
58 oveq1 5926 . . . . . . . 8 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (𝑢(+g𝑅)𝑣) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣))
5958eqeq1d 2202 . . . . . . 7 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → ((𝑢(+g𝑅)𝑣) = (1r𝑅) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅)))
60 eleq1 2256 . . . . . . . 8 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (𝑢 ∈ (Unit‘𝑅) ↔ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
6160orbi1d 792 . . . . . . 7 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → ((𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
6259, 61imbi12d 234 . . . . . 6 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6362ralbidv 2494 . . . . 5 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6410, 40, 48, 11islring 13691 . . . . . . 7 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
651, 64sylib 122 . . . . . 6 (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6665simprd 114 . . . . 5 (𝜑 → ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
6710, 11, 12dvrcl 13634 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
683, 6, 9, 67syl3anc 1249 . . . . 5 (𝜑 → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
6963, 66, 68rspcdva 2870 . . . 4 (𝜑 → ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
7010, 11, 12dvrcl 13634 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
713, 27, 9, 70syl3anc 1249 . . . 4 (𝜑 → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
7257, 69, 71rspcdva 2870 . . 3 (𝜑 → (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))
7352, 72mpd 13 . 2 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
7425, 39, 73mpjaodan 799 1 (𝜑 → (𝑋𝑈𝑌𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  1rcur 13458  Ringcrg 13495  Unitcui 13586  /rcdvr 13630  NzRingcnzr 13678  LRingclring 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-dvr 13631  df-nzr 13679  df-lring 13690
This theorem is referenced by:  aprcotr  13784
  Copyright terms: Public domain W3C validator