| Step | Hyp | Ref
 | Expression | 
| 1 |   | lring.l | 
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ LRing) | 
| 2 |   | lringring 13750 | 
. . . . . . . 8
⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) | 
| 3 | 1, 2 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 4 |   | lring.x | 
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 5 |   | lring.b | 
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | 
| 6 | 4, 5 | eleqtrd 2275 | 
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | 
| 7 |   | lring.s | 
. . . . . . . 8
⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) | 
| 8 |   | lring.u | 
. . . . . . . 8
⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | 
| 9 | 7, 8 | eleqtrd 2275 | 
. . . . . . 7
⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Unit‘𝑅)) | 
| 10 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 11 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Unit‘𝑅) =
(Unit‘𝑅) | 
| 12 |   | eqid 2196 | 
. . . . . . . 8
⊢
(/r‘𝑅) = (/r‘𝑅) | 
| 13 |   | eqid 2196 | 
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 14 | 10, 11, 12, 13 | dvrcan1 13696 | 
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑋) | 
| 15 | 3, 6, 9, 14 | syl3anc 1249 | 
. . . . . 6
⊢ (𝜑 → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑋) | 
| 16 | 15 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑋) | 
| 17 | 3 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) | 
| 18 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) | 
| 19 | 9 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅)) | 
| 20 | 11, 13 | unitmulcl 13669 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) | 
| 21 | 17, 18, 19, 20 | syl3anc 1249 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) | 
| 22 | 16, 21 | eqeltrrd 2274 | 
. . . 4
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝑅)) | 
| 23 | 8 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅)) | 
| 24 | 22, 23 | eleqtrrd 2276 | 
. . 3
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋 ∈ 𝑈) | 
| 25 | 24 | orcd 734 | 
. 2
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | 
| 26 |   | lring.y | 
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 27 | 26, 5 | eleqtrd 2275 | 
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) | 
| 28 | 10, 11, 12, 13 | dvrcan1 13696 | 
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑌) | 
| 29 | 3, 27, 9, 28 | syl3anc 1249 | 
. . . . . 6
⊢ (𝜑 → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑌) | 
| 30 | 29 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑌) | 
| 31 | 3 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) | 
| 32 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) | 
| 33 | 9 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅)) | 
| 34 | 11, 13 | unitmulcl 13669 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) | 
| 35 | 31, 32, 33, 34 | syl3anc 1249 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) | 
| 36 | 30, 35 | eqeltrrd 2274 | 
. . . 4
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌 ∈ (Unit‘𝑅)) | 
| 37 | 8 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅)) | 
| 38 | 36, 37 | eleqtrrd 2276 | 
. . 3
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌 ∈ 𝑈) | 
| 39 | 38 | olcd 735 | 
. 2
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | 
| 40 |   | eqid 2196 | 
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 41 | 10, 11, 40, 12 | dvrdir 13699 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅))) → ((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌)))) | 
| 42 | 3, 6, 27, 9, 41 | syl13anc 1251 | 
. . . 4
⊢ (𝜑 → ((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌)))) | 
| 43 |   | lring.p | 
. . . . . . 7
⊢ (𝜑 → + =
(+g‘𝑅)) | 
| 44 | 43 | eqcomd 2202 | 
. . . . . 6
⊢ (𝜑 → (+g‘𝑅) = + ) | 
| 45 | 44 | oveqd 5939 | 
. . . . 5
⊢ (𝜑 → (𝑋(+g‘𝑅)𝑌) = (𝑋 + 𝑌)) | 
| 46 | 3 | ringgrpd 13561 | 
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 47 | 10, 40, 46, 6, 27 | grpcld 13146 | 
. . . . . 6
⊢ (𝜑 → (𝑋(+g‘𝑅)𝑌) ∈ (Base‘𝑅)) | 
| 48 |   | eqid 2196 | 
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 49 | 10, 11, 12, 48 | dvreq1 13698 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋(+g‘𝑅)𝑌) ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = (1r‘𝑅) ↔ (𝑋(+g‘𝑅)𝑌) = (𝑋 + 𝑌))) | 
| 50 | 3, 47, 9, 49 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → (((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = (1r‘𝑅) ↔ (𝑋(+g‘𝑅)𝑌) = (𝑋 + 𝑌))) | 
| 51 | 45, 50 | mpbird 167 | 
. . . 4
⊢ (𝜑 → ((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = (1r‘𝑅)) | 
| 52 | 42, 51 | eqtr3d 2231 | 
. . 3
⊢ (𝜑 → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅)) | 
| 53 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌)))) | 
| 54 | 53 | eqeq1d 2205 | 
. . . . 5
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅))) | 
| 55 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → (𝑣 ∈ (Unit‘𝑅) ↔ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))) | 
| 56 | 55 | orbi2d 791 | 
. . . . 5
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → (((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))) | 
| 57 | 54, 56 | imbi12d 234 | 
. . . 4
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → ((((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))) | 
| 58 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (𝑢(+g‘𝑅)𝑣) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣)) | 
| 59 | 58 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → ((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅))) | 
| 60 |   | eleq1 2259 | 
. . . . . . . 8
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (𝑢 ∈ (Unit‘𝑅) ↔ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))) | 
| 61 | 60 | orbi1d 792 | 
. . . . . . 7
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → ((𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))) | 
| 62 | 59, 61 | imbi12d 234 | 
. . . . . 6
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) | 
| 63 | 62 | ralbidv 2497 | 
. . . . 5
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) | 
| 64 | 10, 40, 48, 11 | islring 13748 | 
. . . . . . 7
⊢ (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧
∀𝑢 ∈
(Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) | 
| 65 | 1, 64 | sylib 122 | 
. . . . . 6
⊢ (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) | 
| 66 | 65 | simprd 114 | 
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))) | 
| 67 | 10, 11, 12 | dvrcl 13691 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) | 
| 68 | 3, 6, 9, 67 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) | 
| 69 | 63, 66, 68 | rspcdva 2873 | 
. . . 4
⊢ (𝜑 → ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))) | 
| 70 | 10, 11, 12 | dvrcl 13691 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) | 
| 71 | 3, 27, 9, 70 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) | 
| 72 | 57, 69, 71 | rspcdva 2873 | 
. . 3
⊢ (𝜑 → (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))) | 
| 73 | 52, 72 | mpd 13 | 
. 2
⊢ (𝜑 → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))) | 
| 74 | 25, 39, 73 | mpjaodan 799 | 
1
⊢ (𝜑 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |