Step | Hyp | Ref
| Expression |
1 | | lring.l |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ LRing) |
2 | | lringring 13340 |
. . . . . . . 8
⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | lring.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
5 | | lring.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
6 | 4, 5 | eleqtrd 2256 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
7 | | lring.s |
. . . . . . . 8
⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) |
8 | | lring.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
9 | 7, 8 | eleqtrd 2256 |
. . . . . . 7
⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Unit‘𝑅)) |
10 | | eqid 2177 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
11 | | eqid 2177 |
. . . . . . . 8
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
12 | | eqid 2177 |
. . . . . . . 8
⊢
(/r‘𝑅) = (/r‘𝑅) |
13 | | eqid 2177 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
14 | 10, 11, 12, 13 | dvrcan1 13314 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑋) |
15 | 3, 6, 9, 14 | syl3anc 1238 |
. . . . . 6
⊢ (𝜑 → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑋) |
16 | 15 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑋) |
17 | 3 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
18 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) |
19 | 9 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅)) |
20 | 11, 13 | unitmulcl 13287 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) |
21 | 17, 18, 19, 20 | syl3anc 1238 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) |
22 | 16, 21 | eqeltrrd 2255 |
. . . 4
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝑅)) |
23 | 8 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅)) |
24 | 22, 23 | eleqtrrd 2257 |
. . 3
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋 ∈ 𝑈) |
25 | 24 | orcd 733 |
. 2
⊢ ((𝜑 ∧ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
26 | | lring.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
27 | 26, 5 | eleqtrd 2256 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
28 | 10, 11, 12, 13 | dvrcan1 13314 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑌) |
29 | 3, 27, 9, 28 | syl3anc 1238 |
. . . . . 6
⊢ (𝜑 → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑌) |
30 | 29 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) = 𝑌) |
31 | 3 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
32 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) |
33 | 9 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅)) |
34 | 11, 13 | unitmulcl 13287 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) |
35 | 31, 32, 33, 34 | syl3anc 1238 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r‘𝑅)(𝑋 + 𝑌))(.r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) |
36 | 30, 35 | eqeltrrd 2255 |
. . . 4
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌 ∈ (Unit‘𝑅)) |
37 | 8 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅)) |
38 | 36, 37 | eleqtrrd 2257 |
. . 3
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌 ∈ 𝑈) |
39 | 38 | olcd 734 |
. 2
⊢ ((𝜑 ∧ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |
40 | | eqid 2177 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
41 | 10, 11, 40, 12 | dvrdir 13317 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅))) → ((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌)))) |
42 | 3, 6, 27, 9, 41 | syl13anc 1240 |
. . . 4
⊢ (𝜑 → ((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌)))) |
43 | | lring.p |
. . . . . . 7
⊢ (𝜑 → + =
(+g‘𝑅)) |
44 | 43 | eqcomd 2183 |
. . . . . 6
⊢ (𝜑 → (+g‘𝑅) = + ) |
45 | 44 | oveqd 5894 |
. . . . 5
⊢ (𝜑 → (𝑋(+g‘𝑅)𝑌) = (𝑋 + 𝑌)) |
46 | 3 | ringgrpd 13193 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
47 | 10, 40, 46, 6, 27 | grpcld 12895 |
. . . . . 6
⊢ (𝜑 → (𝑋(+g‘𝑅)𝑌) ∈ (Base‘𝑅)) |
48 | | eqid 2177 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
49 | 10, 11, 12, 48 | dvreq1 13316 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋(+g‘𝑅)𝑌) ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = (1r‘𝑅) ↔ (𝑋(+g‘𝑅)𝑌) = (𝑋 + 𝑌))) |
50 | 3, 47, 9, 49 | syl3anc 1238 |
. . . . 5
⊢ (𝜑 → (((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = (1r‘𝑅) ↔ (𝑋(+g‘𝑅)𝑌) = (𝑋 + 𝑌))) |
51 | 45, 50 | mpbird 167 |
. . . 4
⊢ (𝜑 → ((𝑋(+g‘𝑅)𝑌)(/r‘𝑅)(𝑋 + 𝑌)) = (1r‘𝑅)) |
52 | 42, 51 | eqtr3d 2212 |
. . 3
⊢ (𝜑 → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅)) |
53 | | oveq2 5885 |
. . . . . 6
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌)))) |
54 | 53 | eqeq1d 2186 |
. . . . 5
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅))) |
55 | | eleq1 2240 |
. . . . . 6
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → (𝑣 ∈ (Unit‘𝑅) ↔ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))) |
56 | 55 | orbi2d 790 |
. . . . 5
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → (((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))) |
57 | 54, 56 | imbi12d 234 |
. . . 4
⊢ (𝑣 = (𝑌(/r‘𝑅)(𝑋 + 𝑌)) → ((((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))) |
58 | | oveq1 5884 |
. . . . . . . 8
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (𝑢(+g‘𝑅)𝑣) = ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣)) |
59 | 58 | eqeq1d 2186 |
. . . . . . 7
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → ((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅))) |
60 | | eleq1 2240 |
. . . . . . . 8
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (𝑢 ∈ (Unit‘𝑅) ↔ (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))) |
61 | 60 | orbi1d 791 |
. . . . . . 7
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → ((𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))) |
62 | 59, 61 | imbi12d 234 |
. . . . . 6
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) |
63 | 62 | ralbidv 2477 |
. . . . 5
⊢ (𝑢 = (𝑋(/r‘𝑅)(𝑋 + 𝑌)) → (∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) |
64 | 10, 40, 48, 11 | islring 13338 |
. . . . . . 7
⊢ (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧
∀𝑢 ∈
(Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) |
65 | 1, 64 | sylib 122 |
. . . . . 6
⊢ (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))) |
66 | 65 | simprd 114 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g‘𝑅)𝑣) = (1r‘𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))) |
67 | 10, 11, 12 | dvrcl 13309 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) |
68 | 3, 6, 9, 67 | syl3anc 1238 |
. . . . 5
⊢ (𝜑 → (𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) |
69 | 63, 66, 68 | rspcdva 2848 |
. . . 4
⊢ (𝜑 → ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)𝑣) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))) |
70 | 10, 11, 12 | dvrcl 13309 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) |
71 | 3, 27, 9, 70 | syl3anc 1238 |
. . . 4
⊢ (𝜑 → (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅)) |
72 | 57, 69, 71 | rspcdva 2848 |
. . 3
⊢ (𝜑 → (((𝑋(/r‘𝑅)(𝑋 + 𝑌))(+g‘𝑅)(𝑌(/r‘𝑅)(𝑋 + 𝑌))) = (1r‘𝑅) → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))) |
73 | 52, 72 | mpd 13 |
. 2
⊢ (𝜑 → ((𝑋(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r‘𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))) |
74 | 25, 39, 73 | mpjaodan 798 |
1
⊢ (𝜑 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) |