ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringuplu GIF version

Theorem lringuplu 13342
Description: If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lring.b (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
lring.u (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))
lring.p (πœ‘ β†’ + = (+gβ€˜π‘…))
lring.l (πœ‘ β†’ 𝑅 ∈ LRing)
lring.s (πœ‘ β†’ (𝑋 + π‘Œ) ∈ π‘ˆ)
lring.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
lring.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
Assertion
Ref Expression
lringuplu (πœ‘ β†’ (𝑋 ∈ π‘ˆ ∨ π‘Œ ∈ π‘ˆ))

Proof of Theorem lringuplu
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lring.l . . . . . . . 8 (πœ‘ β†’ 𝑅 ∈ LRing)
2 lringring 13340 . . . . . . . 8 (𝑅 ∈ LRing β†’ 𝑅 ∈ Ring)
31, 2syl 14 . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ Ring)
4 lring.x . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ 𝐡)
5 lring.b . . . . . . . 8 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
64, 5eleqtrd 2256 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ (Baseβ€˜π‘…))
7 lring.s . . . . . . . 8 (πœ‘ β†’ (𝑋 + π‘Œ) ∈ π‘ˆ)
8 lring.u . . . . . . . 8 (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))
97, 8eleqtrd 2256 . . . . . . 7 (πœ‘ β†’ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…))
10 eqid 2177 . . . . . . . 8 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
11 eqid 2177 . . . . . . . 8 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
12 eqid 2177 . . . . . . . 8 (/rβ€˜π‘…) = (/rβ€˜π‘…)
13 eqid 2177 . . . . . . . 8 (.rβ€˜π‘…) = (.rβ€˜π‘…)
1410, 11, 12, 13dvrcan1 13314 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Baseβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…)) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) = 𝑋)
153, 6, 9, 14syl3anc 1238 . . . . . 6 (πœ‘ β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) = 𝑋)
1615adantr 276 . . . . 5 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) = 𝑋)
173adantr 276 . . . . . 6 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ 𝑅 ∈ Ring)
18 simpr 110 . . . . . 6 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))
199adantr 276 . . . . . 6 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…))
2011, 13unitmulcl 13287 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…)) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))
2117, 18, 19, 20syl3anc 1238 . . . . 5 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))
2216, 21eqeltrrd 2255 . . . 4 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ 𝑋 ∈ (Unitβ€˜π‘…))
238adantr 276 . . . 4 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ π‘ˆ = (Unitβ€˜π‘…))
2422, 23eleqtrrd 2257 . . 3 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ 𝑋 ∈ π‘ˆ)
2524orcd 733 . 2 ((πœ‘ ∧ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ (𝑋 ∈ π‘ˆ ∨ π‘Œ ∈ π‘ˆ))
26 lring.y . . . . . . . 8 (πœ‘ β†’ π‘Œ ∈ 𝐡)
2726, 5eleqtrd 2256 . . . . . . 7 (πœ‘ β†’ π‘Œ ∈ (Baseβ€˜π‘…))
2810, 11, 12, 13dvrcan1 13314 . . . . . . 7 ((𝑅 ∈ Ring ∧ π‘Œ ∈ (Baseβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…)) β†’ ((π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) = π‘Œ)
293, 27, 9, 28syl3anc 1238 . . . . . 6 (πœ‘ β†’ ((π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) = π‘Œ)
3029adantr 276 . . . . 5 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ ((π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) = π‘Œ)
313adantr 276 . . . . . 6 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ 𝑅 ∈ Ring)
32 simpr 110 . . . . . 6 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))
339adantr 276 . . . . . 6 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…))
3411, 13unitmulcl 13287 . . . . . 6 ((𝑅 ∈ Ring ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…)) β†’ ((π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))
3531, 32, 33, 34syl3anc 1238 . . . . 5 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ ((π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))(.rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))
3630, 35eqeltrrd 2255 . . . 4 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ π‘Œ ∈ (Unitβ€˜π‘…))
378adantr 276 . . . 4 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ π‘ˆ = (Unitβ€˜π‘…))
3836, 37eleqtrrd 2257 . . 3 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ π‘Œ ∈ π‘ˆ)
3938olcd 734 . 2 ((πœ‘ ∧ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)) β†’ (𝑋 ∈ π‘ˆ ∨ π‘Œ ∈ π‘ˆ))
40 eqid 2177 . . . . . 6 (+gβ€˜π‘…) = (+gβ€˜π‘…)
4110, 11, 40, 12dvrdir 13317 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋 ∈ (Baseβ€˜π‘…) ∧ π‘Œ ∈ (Baseβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…))) β†’ ((𝑋(+gβ€˜π‘…)π‘Œ)(/rβ€˜π‘…)(𝑋 + π‘Œ)) = ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)(π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))))
423, 6, 27, 9, 41syl13anc 1240 . . . 4 (πœ‘ β†’ ((𝑋(+gβ€˜π‘…)π‘Œ)(/rβ€˜π‘…)(𝑋 + π‘Œ)) = ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)(π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))))
43 lring.p . . . . . . 7 (πœ‘ β†’ + = (+gβ€˜π‘…))
4443eqcomd 2183 . . . . . 6 (πœ‘ β†’ (+gβ€˜π‘…) = + )
4544oveqd 5894 . . . . 5 (πœ‘ β†’ (𝑋(+gβ€˜π‘…)π‘Œ) = (𝑋 + π‘Œ))
463ringgrpd 13193 . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ Grp)
4710, 40, 46, 6, 27grpcld 12895 . . . . . 6 (πœ‘ β†’ (𝑋(+gβ€˜π‘…)π‘Œ) ∈ (Baseβ€˜π‘…))
48 eqid 2177 . . . . . . 7 (1rβ€˜π‘…) = (1rβ€˜π‘…)
4910, 11, 12, 48dvreq1 13316 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(+gβ€˜π‘…)π‘Œ) ∈ (Baseβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…)) β†’ (((𝑋(+gβ€˜π‘…)π‘Œ)(/rβ€˜π‘…)(𝑋 + π‘Œ)) = (1rβ€˜π‘…) ↔ (𝑋(+gβ€˜π‘…)π‘Œ) = (𝑋 + π‘Œ)))
503, 47, 9, 49syl3anc 1238 . . . . 5 (πœ‘ β†’ (((𝑋(+gβ€˜π‘…)π‘Œ)(/rβ€˜π‘…)(𝑋 + π‘Œ)) = (1rβ€˜π‘…) ↔ (𝑋(+gβ€˜π‘…)π‘Œ) = (𝑋 + π‘Œ)))
5145, 50mpbird 167 . . . 4 (πœ‘ β†’ ((𝑋(+gβ€˜π‘…)π‘Œ)(/rβ€˜π‘…)(𝑋 + π‘Œ)) = (1rβ€˜π‘…))
5242, 51eqtr3d 2212 . . 3 (πœ‘ β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)(π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))) = (1rβ€˜π‘…))
53 oveq2 5885 . . . . . 6 (𝑣 = (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣) = ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)(π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))))
5453eqeq1d 2186 . . . . 5 (𝑣 = (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ (((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) ↔ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)(π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))) = (1rβ€˜π‘…)))
55 eleq1 2240 . . . . . 6 (𝑣 = (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ (𝑣 ∈ (Unitβ€˜π‘…) ↔ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)))
5655orbi2d 790 . . . . 5 (𝑣 = (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ (((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…)) ↔ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))))
5754, 56imbi12d 234 . . . 4 (𝑣 = (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ ((((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…))) ↔ (((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)(π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))) = (1rβ€˜π‘…) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)))))
58 oveq1 5884 . . . . . . . 8 (𝑒 = (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ (𝑒(+gβ€˜π‘…)𝑣) = ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣))
5958eqeq1d 2186 . . . . . . 7 (𝑒 = (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) ↔ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…)))
60 eleq1 2240 . . . . . . . 8 (𝑒 = (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ (𝑒 ∈ (Unitβ€˜π‘…) ↔ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)))
6160orbi1d 791 . . . . . . 7 (𝑒 = (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ ((𝑒 ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…)) ↔ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…))))
6259, 61imbi12d 234 . . . . . 6 (𝑒 = (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ (((𝑒(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ (𝑒 ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…))) ↔ (((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…)))))
6362ralbidv 2477 . . . . 5 (𝑒 = (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) β†’ (βˆ€π‘£ ∈ (Baseβ€˜π‘…)((𝑒(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ (𝑒 ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…))) ↔ βˆ€π‘£ ∈ (Baseβ€˜π‘…)(((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…)))))
6410, 40, 48, 11islring 13338 . . . . . . 7 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ βˆ€π‘’ ∈ (Baseβ€˜π‘…)βˆ€π‘£ ∈ (Baseβ€˜π‘…)((𝑒(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ (𝑒 ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…)))))
651, 64sylib 122 . . . . . 6 (πœ‘ β†’ (𝑅 ∈ NzRing ∧ βˆ€π‘’ ∈ (Baseβ€˜π‘…)βˆ€π‘£ ∈ (Baseβ€˜π‘…)((𝑒(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ (𝑒 ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…)))))
6665simprd 114 . . . . 5 (πœ‘ β†’ βˆ€π‘’ ∈ (Baseβ€˜π‘…)βˆ€π‘£ ∈ (Baseβ€˜π‘…)((𝑒(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ (𝑒 ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…))))
6710, 11, 12dvrcl 13309 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Baseβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…)) β†’ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Baseβ€˜π‘…))
683, 6, 9, 67syl3anc 1238 . . . . 5 (πœ‘ β†’ (𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Baseβ€˜π‘…))
6963, 66, 68rspcdva 2848 . . . 4 (πœ‘ β†’ βˆ€π‘£ ∈ (Baseβ€˜π‘…)(((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)𝑣) = (1rβ€˜π‘…) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ 𝑣 ∈ (Unitβ€˜π‘…))))
7010, 11, 12dvrcl 13309 . . . . 5 ((𝑅 ∈ Ring ∧ π‘Œ ∈ (Baseβ€˜π‘…) ∧ (𝑋 + π‘Œ) ∈ (Unitβ€˜π‘…)) β†’ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Baseβ€˜π‘…))
713, 27, 9, 70syl3anc 1238 . . . 4 (πœ‘ β†’ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Baseβ€˜π‘…))
7257, 69, 71rspcdva 2848 . . 3 (πœ‘ β†’ (((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ))(+gβ€˜π‘…)(π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ))) = (1rβ€˜π‘…) β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…))))
7352, 72mpd 13 . 2 (πœ‘ β†’ ((𝑋(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…) ∨ (π‘Œ(/rβ€˜π‘…)(𝑋 + π‘Œ)) ∈ (Unitβ€˜π‘…)))
7425, 39, 73mpjaodan 798 1 (πœ‘ β†’ (𝑋 ∈ π‘ˆ ∨ π‘Œ ∈ π‘ˆ))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 708   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  .rcmulr 12539  1rcur 13147  Ringcrg 13184  Unitcui 13261  /rcdvr 13305  NzRingcnzr 13328  LRingclring 13336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-tpos 6248  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-oppr 13245  df-dvdsr 13263  df-unit 13264  df-invr 13295  df-dvr 13306  df-nzr 13329  df-lring 13337
This theorem is referenced by:  aprcotr  13380
  Copyright terms: Public domain W3C validator