ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm GIF version

Theorem cnm 7892
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
Assertion
Ref Expression
cnm (𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnm
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4675 . . 3 (𝐴 ∈ (R × R) → ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)))
2 df-c 7878 . . 3 ℂ = (R × R)
31, 2eleq2s 2288 . 2 (𝐴 ∈ ℂ → ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)))
4 vex 2763 . . . . . 6 𝑢 ∈ V
5 vex 2763 . . . . . 6 𝑣 ∈ V
6 opm 4263 . . . . . 6 (∃𝑥 𝑥 ∈ ⟨𝑢, 𝑣⟩ ↔ (𝑢 ∈ V ∧ 𝑣 ∈ V))
74, 5, 6mpbir2an 944 . . . . 5 𝑥 𝑥 ∈ ⟨𝑢, 𝑣
8 simprl 529 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → 𝐴 = ⟨𝑢, 𝑣⟩)
98eleq2d 2263 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → (𝑥𝐴𝑥 ∈ ⟨𝑢, 𝑣⟩))
109exbidv 1836 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → (∃𝑥 𝑥𝐴 ↔ ∃𝑥 𝑥 ∈ ⟨𝑢, 𝑣⟩))
117, 10mpbiri 168 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → ∃𝑥 𝑥𝐴)
1211ex 115 . . 3 (𝐴 ∈ ℂ → ((𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)) → ∃𝑥 𝑥𝐴))
1312exlimdvv 1909 . 2 (𝐴 ∈ ℂ → (∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)) → ∃𝑥 𝑥𝐴))
143, 13mpd 13 1 (𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3621   × cxp 4657  Rcnr 7357  cc 7870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-c 7878
This theorem is referenced by:  axaddf  7928  axmulf  7929
  Copyright terms: Public domain W3C validator