ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm GIF version

Theorem cnm 7944
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
Assertion
Ref Expression
cnm (𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnm
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4690 . . 3 (𝐴 ∈ (R × R) → ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)))
2 df-c 7930 . . 3 ℂ = (R × R)
31, 2eleq2s 2299 . 2 (𝐴 ∈ ℂ → ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)))
4 vex 2774 . . . . . 6 𝑢 ∈ V
5 vex 2774 . . . . . 6 𝑣 ∈ V
6 opm 4277 . . . . . 6 (∃𝑥 𝑥 ∈ ⟨𝑢, 𝑣⟩ ↔ (𝑢 ∈ V ∧ 𝑣 ∈ V))
74, 5, 6mpbir2an 944 . . . . 5 𝑥 𝑥 ∈ ⟨𝑢, 𝑣
8 simprl 529 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → 𝐴 = ⟨𝑢, 𝑣⟩)
98eleq2d 2274 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → (𝑥𝐴𝑥 ∈ ⟨𝑢, 𝑣⟩))
109exbidv 1847 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → (∃𝑥 𝑥𝐴 ↔ ∃𝑥 𝑥 ∈ ⟨𝑢, 𝑣⟩))
117, 10mpbiri 168 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → ∃𝑥 𝑥𝐴)
1211ex 115 . . 3 (𝐴 ∈ ℂ → ((𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)) → ∃𝑥 𝑥𝐴))
1312exlimdvv 1920 . 2 (𝐴 ∈ ℂ → (∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)) → ∃𝑥 𝑥𝐴))
143, 13mpd 13 1 (𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771  cop 3635   × cxp 4672  Rcnr 7409  cc 7922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4680  df-c 7930
This theorem is referenced by:  axaddf  7980  axmulf  7981
  Copyright terms: Public domain W3C validator