| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnm | GIF version | ||
| Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnm | ⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxpi 4734 | . . 3 ⊢ (𝐴 ∈ (R × R) → ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) | |
| 2 | df-c 8001 | . . 3 ⊢ ℂ = (R × R) | |
| 3 | 1, 2 | eleq2s 2324 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) |
| 4 | vex 2802 | . . . . . 6 ⊢ 𝑢 ∈ V | |
| 5 | vex 2802 | . . . . . 6 ⊢ 𝑣 ∈ V | |
| 6 | opm 4319 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 〈𝑢, 𝑣〉 ↔ (𝑢 ∈ V ∧ 𝑣 ∈ V)) | |
| 7 | 4, 5, 6 | mpbir2an 948 | . . . . 5 ⊢ ∃𝑥 𝑥 ∈ 〈𝑢, 𝑣〉 |
| 8 | simprl 529 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → 𝐴 = 〈𝑢, 𝑣〉) | |
| 9 | 8 | eleq2d 2299 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 〈𝑢, 𝑣〉)) |
| 10 | 9 | exbidv 1871 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 〈𝑢, 𝑣〉)) |
| 11 | 7, 10 | mpbiri 168 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → ∃𝑥 𝑥 ∈ 𝐴) |
| 12 | 11 | ex 115 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R)) → ∃𝑥 𝑥 ∈ 𝐴)) |
| 13 | 12 | exlimdvv 1944 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R)) → ∃𝑥 𝑥 ∈ 𝐴)) |
| 14 | 3, 13 | mpd 13 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 〈cop 3669 × cxp 4716 Rcnr 7480 ℂcc 7993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 df-c 8001 |
| This theorem is referenced by: axaddf 8051 axmulf 8052 |
| Copyright terms: Public domain | W3C validator |