ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm GIF version

Theorem cnm 7899
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
Assertion
Ref Expression
cnm (𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnm
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4679 . . 3 (𝐴 ∈ (R × R) → ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)))
2 df-c 7885 . . 3 ℂ = (R × R)
31, 2eleq2s 2291 . 2 (𝐴 ∈ ℂ → ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)))
4 vex 2766 . . . . . 6 𝑢 ∈ V
5 vex 2766 . . . . . 6 𝑣 ∈ V
6 opm 4267 . . . . . 6 (∃𝑥 𝑥 ∈ ⟨𝑢, 𝑣⟩ ↔ (𝑢 ∈ V ∧ 𝑣 ∈ V))
74, 5, 6mpbir2an 944 . . . . 5 𝑥 𝑥 ∈ ⟨𝑢, 𝑣
8 simprl 529 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → 𝐴 = ⟨𝑢, 𝑣⟩)
98eleq2d 2266 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → (𝑥𝐴𝑥 ∈ ⟨𝑢, 𝑣⟩))
109exbidv 1839 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → (∃𝑥 𝑥𝐴 ↔ ∃𝑥 𝑥 ∈ ⟨𝑢, 𝑣⟩))
117, 10mpbiri 168 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R))) → ∃𝑥 𝑥𝐴)
1211ex 115 . . 3 (𝐴 ∈ ℂ → ((𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)) → ∃𝑥 𝑥𝐴))
1312exlimdvv 1912 . 2 (𝐴 ∈ ℂ → (∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ (𝑢R𝑣R)) → ∃𝑥 𝑥𝐴))
143, 13mpd 13 1 (𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cop 3625   × cxp 4661  Rcnr 7364  cc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-c 7885
This theorem is referenced by:  axaddf  7935  axmulf  7936
  Copyright terms: Public domain W3C validator