![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnm | GIF version |
Description: A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnm | ⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxpi 4644 | . . 3 ⊢ (𝐴 ∈ (R × R) → ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) | |
2 | df-c 7820 | . . 3 ⊢ ℂ = (R × R) | |
3 | 1, 2 | eleq2s 2272 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) |
4 | vex 2742 | . . . . . 6 ⊢ 𝑢 ∈ V | |
5 | vex 2742 | . . . . . 6 ⊢ 𝑣 ∈ V | |
6 | opm 4236 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 〈𝑢, 𝑣〉 ↔ (𝑢 ∈ V ∧ 𝑣 ∈ V)) | |
7 | 4, 5, 6 | mpbir2an 942 | . . . . 5 ⊢ ∃𝑥 𝑥 ∈ 〈𝑢, 𝑣〉 |
8 | simprl 529 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → 𝐴 = 〈𝑢, 𝑣〉) | |
9 | 8 | eleq2d 2247 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 〈𝑢, 𝑣〉)) |
10 | 9 | exbidv 1825 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 〈𝑢, 𝑣〉)) |
11 | 7, 10 | mpbiri 168 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R))) → ∃𝑥 𝑥 ∈ 𝐴) |
12 | 11 | ex 115 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R)) → ∃𝑥 𝑥 ∈ 𝐴)) |
13 | 12 | exlimdvv 1897 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ R ∧ 𝑣 ∈ R)) → ∃𝑥 𝑥 ∈ 𝐴)) |
14 | 3, 13 | mpd 13 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 〈cop 3597 × cxp 4626 Rcnr 7299 ℂcc 7812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 df-c 7820 |
This theorem is referenced by: axaddf 7870 axmulf 7871 |
Copyright terms: Public domain | W3C validator |