ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcnsr GIF version

Theorem addcnsr 7833
Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
Assertion
Ref Expression
addcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)

Proof of Theorem addcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclsr 7752 . . . 4 ((𝐴R𝐶R) → (𝐴 +R 𝐶) ∈ R)
21ad2ant2r 509 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 +R 𝐶) ∈ R)
3 addclsr 7752 . . . 4 ((𝐵R𝐷R) → (𝐵 +R 𝐷) ∈ R)
43ad2ant2l 508 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 +R 𝐷) ∈ R)
5 opelxpi 4659 . . 3 (((𝐴 +R 𝐶) ∈ R ∧ (𝐵 +R 𝐷) ∈ R) → ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ (R × R))
62, 4, 5syl2anc 411 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ (R × R))
7 simpll 527 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑤 = 𝐴)
8 simprl 529 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑢 = 𝐶)
97, 8oveq12d 5893 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑤 +R 𝑢) = (𝐴 +R 𝐶))
10 simplr 528 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑣 = 𝐵)
11 simprr 531 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑓 = 𝐷)
1210, 11oveq12d 5893 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 +R 𝑓) = (𝐵 +R 𝐷))
139, 12opeq12d 3787 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
14 df-add 7822 . . 3 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
15 df-c 7817 . . . . . . 7 ℂ = (R × R)
1615eleq2i 2244 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
1715eleq2i 2244 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
1816, 17anbi12i 460 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1918anbi1i 458 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
2019oprabbii 5930 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
2114, 20eqtri 2198 . 2 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
226, 13, 21ovi3 6011 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1492  wcel 2148  cop 3596   × cxp 4625  (class class class)co 5875  {coprab 5876  Rcnr 7296   +R cplr 7300  cc 7809   + caddc 7814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-iplp 7467  df-enr 7725  df-nr 7726  df-plr 7727  df-c 7817  df-add 7822
This theorem is referenced by:  addresr  7836  addcnsrec  7841  axaddcl  7863  axaddcom  7869  ax0id  7877  axcnre  7880
  Copyright terms: Public domain W3C validator