ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabssxp GIF version

Theorem opabssxp 4738
Description: An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.)
Assertion
Ref Expression
opabssxp {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabssxp
StepHypRef Expression
1 simpl 109 . . 3 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → (𝑥𝐴𝑦𝐵))
21ssopab2i 4313 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
3 df-xp 4670 . 2 (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
42, 3sseqtrri 3219 1 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2167  wss 3157  {copab 4094   × cxp 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-opab 4096  df-xp 4670
This theorem is referenced by:  brab2ga  4739  dmoprabss  6008  ecopovsym  6699  ecopovtrn  6700  ecopover  6701  ecopovsymg  6702  ecopovtrng  6703  ecopoverg  6704  opabfi  7008  netap  7339  2omotaplemap  7342  2omotaplemst  7343  enqex  7446  ltrelnq  7451  enq0ex  7525  ltrelpr  7591  enrex  7823  ltrelsr  7824  ltrelre  7919  ltrelxr  8106  dvdszrcl  11976  prdsex  12973  prdsval  12977  prdsbaslemss  12978  releqgg  13428  eqgex  13429  aprval  13916  aprap  13920  lmfval  14536  lgsquadlemofi  15425  lgsquadlem1  15426  lgsquadlem2  15427
  Copyright terms: Public domain W3C validator