Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > velsn | GIF version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
velsn | ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elsn 3599 | 1 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sn 3589 |
This theorem is referenced by: dfpr2 3602 mosn 3619 ralsnsg 3620 ralsns 3621 rexsns 3622 disjsn 3645 snprc 3648 euabsn2 3652 prmg 3704 snss 3709 difprsnss 3718 eqsnm 3742 snsssn 3748 snsspw 3751 dfnfc2 3814 uni0b 3821 uni0c 3822 sndisj 3985 unidif0 4153 exmid01 4184 rext 4200 exss 4212 frirrg 4335 ordsucim 4484 ordtriexmidlem 4503 ordtri2or2exmidlem 4510 onsucelsucexmidlem 4513 elirr 4525 sucprcreg 4533 fconstmpt 4658 opeliunxp 4666 dmsnopg 5082 dfmpt3 5320 nfunsn 5530 fsn 5668 fnasrn 5674 fnasrng 5676 fconstfvm 5714 eusvobj2 5839 opabex3d 6100 opabex3 6101 dcdifsnid 6483 ecexr 6518 ixp0x 6704 xpsnen 6799 fidifsnen 6848 difinfsn 7077 exmidonfinlem 7170 iccid 9882 fzsn 10022 fzpr 10033 fzdifsuc 10037 fsum2dlemstep 11397 prodsnf 11555 fprod1p 11562 fprodunsn 11567 fprod2dlemstep 11585 ef0lem 11623 1nprm 12068 mgmidsssn0 12638 mnd1id 12680 0subm 12702 restsn 12974 |
Copyright terms: Public domain | W3C validator |