Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > velsn | GIF version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
velsn | ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elsn 3605 | 1 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2146 {csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sn 3595 |
This theorem is referenced by: dfpr2 3608 mosn 3625 ralsnsg 3626 ralsns 3627 rexsns 3628 disjsn 3651 snprc 3654 euabsn2 3658 prmg 3710 snssOLD 3715 snssb 3722 difprsnss 3727 eqsnm 3751 snsssn 3757 snsspw 3760 dfnfc2 3823 uni0b 3830 uni0c 3831 sndisj 3994 unidif0 4162 exmid01 4193 rext 4209 exss 4221 frirrg 4344 ordsucim 4493 ordtriexmidlem 4512 ordtri2or2exmidlem 4519 onsucelsucexmidlem 4522 elirr 4534 sucprcreg 4542 fconstmpt 4667 opeliunxp 4675 restidsing 4956 dmsnopg 5092 dfmpt3 5330 nfunsn 5541 fsn 5680 fnasrn 5686 fnasrng 5688 fconstfvm 5726 eusvobj2 5851 opabex3d 6112 opabex3 6113 dcdifsnid 6495 ecexr 6530 ixp0x 6716 xpsnen 6811 fidifsnen 6860 difinfsn 7089 exmidonfinlem 7182 iccid 9896 fzsn 10036 fzpr 10047 fzdifsuc 10051 fsum2dlemstep 11410 prodsnf 11568 fprod1p 11575 fprodunsn 11580 fprod2dlemstep 11598 ef0lem 11636 1nprm 12081 mgmidsssn0 12678 mnd1id 12720 0subm 12742 restsn 13260 |
Copyright terms: Public domain | W3C validator |