| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velsn | GIF version | ||
| Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| velsn | ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elsn 3649 | 1 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2176 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: dfpr2 3652 mosn 3669 ralsnsg 3670 ralsns 3671 rexsns 3672 disjsn 3695 snprc 3698 euabsn2 3702 prmg 3754 snssOLD 3759 snssb 3766 difprsnss 3771 eqsnm 3796 snsssn 3802 snsspw 3805 dfnfc2 3868 uni0b 3875 uni0c 3876 sndisj 4040 unidif0 4211 exmid01 4242 rext 4259 exss 4271 frirrg 4397 ordsucim 4548 ordtriexmidlem 4567 ordtri2or2exmidlem 4574 onsucelsucexmidlem 4577 elirr 4589 sucprcreg 4597 fconstmpt 4722 opeliunxp 4730 restidsing 5015 dmsnopg 5154 dfmpt3 5398 nfunsn 5611 fsn 5752 fnasrn 5758 fnasrng 5760 fconstfvm 5802 eusvobj2 5930 opabex3d 6206 opabex3 6207 dcdifsnid 6590 ecexr 6625 ixp0x 6813 xpsnen 6916 fidifsnen 6967 difinfsn 7202 exmidonfinlem 7301 iccid 10047 fzsn 10188 fzpr 10199 fzdifsuc 10203 fsum2dlemstep 11745 prodsnf 11903 fprod1p 11910 fprodunsn 11915 fprod2dlemstep 11933 ef0lem 11971 1nprm 12436 mgmidsssn0 13216 mnd1id 13288 0subm 13316 trivsubgsnd 13537 kerf1ghm 13610 mulgrhm2 14372 restsn 14652 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |