![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > velsn | GIF version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
velsn | ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elsn 3635 | 1 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 {csn 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3625 |
This theorem is referenced by: dfpr2 3638 mosn 3655 ralsnsg 3656 ralsns 3657 rexsns 3658 disjsn 3681 snprc 3684 euabsn2 3688 prmg 3740 snssOLD 3745 snssb 3752 difprsnss 3757 eqsnm 3782 snsssn 3788 snsspw 3791 dfnfc2 3854 uni0b 3861 uni0c 3862 sndisj 4026 unidif0 4197 exmid01 4228 rext 4245 exss 4257 frirrg 4382 ordsucim 4533 ordtriexmidlem 4552 ordtri2or2exmidlem 4559 onsucelsucexmidlem 4562 elirr 4574 sucprcreg 4582 fconstmpt 4707 opeliunxp 4715 restidsing 4999 dmsnopg 5138 dfmpt3 5377 nfunsn 5590 fsn 5731 fnasrn 5737 fnasrng 5739 fconstfvm 5777 eusvobj2 5905 opabex3d 6175 opabex3 6176 dcdifsnid 6559 ecexr 6594 ixp0x 6782 xpsnen 6877 fidifsnen 6928 difinfsn 7161 exmidonfinlem 7255 iccid 9994 fzsn 10135 fzpr 10146 fzdifsuc 10150 fsum2dlemstep 11580 prodsnf 11738 fprod1p 11745 fprodunsn 11750 fprod2dlemstep 11768 ef0lem 11806 1nprm 12255 mgmidsssn0 12970 mnd1id 13031 0subm 13059 trivsubgsnd 13274 kerf1ghm 13347 mulgrhm2 14109 restsn 14359 lgsquadlem1 15234 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |