| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velsn | GIF version | ||
| Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| velsn | ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elsn 3638 | 1 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 |
| This theorem is referenced by: dfpr2 3641 mosn 3658 ralsnsg 3659 ralsns 3660 rexsns 3661 disjsn 3684 snprc 3687 euabsn2 3691 prmg 3743 snssOLD 3748 snssb 3755 difprsnss 3760 eqsnm 3785 snsssn 3791 snsspw 3794 dfnfc2 3857 uni0b 3864 uni0c 3865 sndisj 4029 unidif0 4200 exmid01 4231 rext 4248 exss 4260 frirrg 4385 ordsucim 4536 ordtriexmidlem 4555 ordtri2or2exmidlem 4562 onsucelsucexmidlem 4565 elirr 4577 sucprcreg 4585 fconstmpt 4710 opeliunxp 4718 restidsing 5002 dmsnopg 5141 dfmpt3 5380 nfunsn 5593 fsn 5734 fnasrn 5740 fnasrng 5742 fconstfvm 5780 eusvobj2 5908 opabex3d 6178 opabex3 6179 dcdifsnid 6562 ecexr 6597 ixp0x 6785 xpsnen 6880 fidifsnen 6931 difinfsn 7166 exmidonfinlem 7260 iccid 10000 fzsn 10141 fzpr 10152 fzdifsuc 10156 fsum2dlemstep 11599 prodsnf 11757 fprod1p 11764 fprodunsn 11769 fprod2dlemstep 11787 ef0lem 11825 1nprm 12282 mgmidsssn0 13027 mnd1id 13088 0subm 13116 trivsubgsnd 13331 kerf1ghm 13404 mulgrhm2 14166 restsn 14416 lgsquadlem1 15318 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |