| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velsn | GIF version | ||
| Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| velsn | ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elsn 3682 | 1 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: dfpr2 3685 mosn 3702 ralsnsg 3703 ralsns 3704 rexsns 3705 disjsn 3728 snprc 3731 euabsn2 3735 snmb 3788 prmg 3789 snssOLD 3794 snssb 3801 difprsnss 3806 eqsnm 3833 snsssn 3839 snsspw 3842 dfnfc2 3906 uni0b 3913 uni0c 3914 sndisj 4079 unidif0 4251 exmid01 4282 rext 4301 exss 4313 frirrg 4441 ordsucim 4592 ordtriexmidlem 4611 ordtri2or2exmidlem 4618 onsucelsucexmidlem 4621 elirr 4633 sucprcreg 4641 fconstmpt 4766 opeliunxp 4774 restidsing 5061 dmsnopg 5200 dfmpt3 5446 nfunsn 5664 fsn 5807 fnasrn 5813 fnasrng 5815 fconstfvm 5857 eusvobj2 5987 opabex3d 6266 opabex3 6267 dcdifsnid 6650 ecexr 6685 ixp0x 6873 xpsnen 6980 fidifsnen 7032 difinfsn 7267 exmidonfinlem 7371 iccid 10121 fzsn 10262 fzpr 10273 fzdifsuc 10277 fsum2dlemstep 11945 prodsnf 12103 fprod1p 12110 fprodunsn 12115 fprod2dlemstep 12133 ef0lem 12171 1nprm 12636 mgmidsssn0 13417 mnd1id 13489 0subm 13517 trivsubgsnd 13738 kerf1ghm 13811 mulgrhm2 14574 restsn 14854 lgsquadlem1 15756 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |