| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velsn | GIF version | ||
| Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| velsn | ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elsn 3649 | 1 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2176 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: dfpr2 3652 mosn 3669 ralsnsg 3670 ralsns 3671 rexsns 3672 disjsn 3695 snprc 3698 euabsn2 3702 prmg 3754 snssOLD 3759 snssb 3766 difprsnss 3771 eqsnm 3796 snsssn 3802 snsspw 3805 dfnfc2 3868 uni0b 3875 uni0c 3876 sndisj 4041 unidif0 4212 exmid01 4243 rext 4260 exss 4272 frirrg 4398 ordsucim 4549 ordtriexmidlem 4568 ordtri2or2exmidlem 4575 onsucelsucexmidlem 4578 elirr 4590 sucprcreg 4598 fconstmpt 4723 opeliunxp 4731 restidsing 5016 dmsnopg 5155 dfmpt3 5400 nfunsn 5613 fsn 5754 fnasrn 5760 fnasrng 5762 fconstfvm 5804 eusvobj2 5932 opabex3d 6208 opabex3 6209 dcdifsnid 6592 ecexr 6627 ixp0x 6815 xpsnen 6918 fidifsnen 6969 difinfsn 7204 exmidonfinlem 7303 iccid 10049 fzsn 10190 fzpr 10201 fzdifsuc 10205 fsum2dlemstep 11778 prodsnf 11936 fprod1p 11943 fprodunsn 11948 fprod2dlemstep 11966 ef0lem 12004 1nprm 12469 mgmidsssn0 13249 mnd1id 13321 0subm 13349 trivsubgsnd 13570 kerf1ghm 13643 mulgrhm2 14405 restsn 14685 lgsquadlem1 15587 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |