Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an12i | GIF version |
Description: mp3an 1327 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an12i.1 | ⊢ 𝜑 |
mp3an12i.2 | ⊢ 𝜓 |
mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3an12i | ⊢ (𝜒 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 2, 3, 4 | mp3an12 1317 | . 2 ⊢ (𝜃 → 𝜏) |
6 | 1, 5 | syl 14 | 1 ⊢ (𝜒 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: map1 6774 suplocsrlempr 7744 geo2lim 11453 fprodge0 11574 fprodge1 11576 oddp1d2 11823 bezoutlema 11928 bezoutlemb 11929 pythagtriplem1 12193 exmidunben 12355 ismet 12944 isxmet 12945 coseq0negpitopi 13357 cosq34lt1 13371 cos02pilt1 13372 logdivlti 13402 |
Copyright terms: Public domain | W3C validator |