| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12i | GIF version | ||
| Description: mp3an 1348 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an12i.1 | ⊢ 𝜑 |
| mp3an12i.2 | ⊢ 𝜓 |
| mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
| mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an12i | ⊢ (𝜒 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
| 2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
| 4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 2, 3, 4 | mp3an12 1338 | . 2 ⊢ (𝜃 → 𝜏) |
| 6 | 1, 5 | syl 14 | 1 ⊢ (𝜒 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: map1 6880 exmidpw2en 6982 suplocsrlempr 7891 geo2lim 11698 fprodge0 11819 fprodge1 11821 3dvds 12046 oddp1d2 12072 bezoutlema 12191 bezoutlemb 12192 pythagtriplem1 12459 exmidunben 12668 psrelbas 14304 psraddcl 14308 psr0cl 14309 psr0lid 14310 psrnegcl 14311 psrlinv 14312 psrgrp 14313 psr1clfi 14316 ismet 14664 isxmet 14665 dvidrelem 15012 coseq0negpitopi 15156 cosq34lt1 15170 cos02pilt1 15171 logdivlti 15201 1sgm2ppw 15315 lgseisenlem1 15395 lgseisen 15399 lgsquad3 15409 m1lgs 15410 2omapen 15727 |
| Copyright terms: Public domain | W3C validator |