| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12i | GIF version | ||
| Description: mp3an 1350 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an12i.1 | ⊢ 𝜑 |
| mp3an12i.2 | ⊢ 𝜓 |
| mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
| mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an12i | ⊢ (𝜒 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
| 2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
| 4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 2, 3, 4 | mp3an12 1340 | . 2 ⊢ (𝜃 → 𝜏) |
| 6 | 1, 5 | syl 14 | 1 ⊢ (𝜒 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: funopsn 5764 map1 6906 exmidpw2en 7011 suplocsrlempr 7922 geo2lim 11860 fprodge0 11981 fprodge1 11983 3dvds 12208 oddp1d2 12234 bezoutlema 12353 bezoutlemb 12354 pythagtriplem1 12621 exmidunben 12830 psrelbas 14470 psraddcl 14475 psr0cl 14476 psr0lid 14477 psrnegcl 14478 psrlinv 14479 psrgrp 14480 psr1clfi 14483 mplsubgfilemcl 14494 ismet 14849 isxmet 14850 dvidrelem 15197 coseq0negpitopi 15341 cosq34lt1 15355 cos02pilt1 15356 logdivlti 15386 1sgm2ppw 15500 lgseisenlem1 15580 lgseisen 15584 lgsquad3 15594 m1lgs 15595 2omapen 15970 |
| Copyright terms: Public domain | W3C validator |