![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an12i | GIF version |
Description: mp3an 1348 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an12i.1 | ⊢ 𝜑 |
mp3an12i.2 | ⊢ 𝜓 |
mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3an12i | ⊢ (𝜒 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 2, 3, 4 | mp3an12 1338 | . 2 ⊢ (𝜃 → 𝜏) |
6 | 1, 5 | syl 14 | 1 ⊢ (𝜒 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: map1 6868 exmidpw2en 6970 suplocsrlempr 7869 geo2lim 11662 fprodge0 11783 fprodge1 11785 oddp1d2 12034 bezoutlema 12139 bezoutlemb 12140 pythagtriplem1 12406 exmidunben 12586 psrelbas 14171 psraddcl 14175 ismet 14523 isxmet 14524 dvidrelem 14871 coseq0negpitopi 15012 cosq34lt1 15026 cos02pilt1 15027 logdivlti 15057 lgseisenlem1 15227 lgseisen 15231 lgsquad3 15241 m1lgs 15242 |
Copyright terms: Public domain | W3C validator |