| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12i | GIF version | ||
| Description: mp3an 1350 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an12i.1 | ⊢ 𝜑 |
| mp3an12i.2 | ⊢ 𝜓 |
| mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
| mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an12i | ⊢ (𝜒 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
| 2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
| 4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 2, 3, 4 | mp3an12 1340 | . 2 ⊢ (𝜃 → 𝜏) |
| 6 | 1, 5 | syl 14 | 1 ⊢ (𝜒 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: funopsn 5785 map1 6928 exmidpw2en 7035 suplocsrlempr 7955 geo2lim 11942 fprodge0 12063 fprodge1 12065 3dvds 12290 oddp1d2 12316 bezoutlema 12435 bezoutlemb 12436 pythagtriplem1 12703 exmidunben 12912 psrelbas 14552 psraddcl 14557 psr0cl 14558 psr0lid 14559 psrnegcl 14560 psrlinv 14561 psrgrp 14562 psr1clfi 14565 mplsubgfilemcl 14576 ismet 14931 isxmet 14932 dvidrelem 15279 coseq0negpitopi 15423 cosq34lt1 15437 cos02pilt1 15438 logdivlti 15468 1sgm2ppw 15582 lgseisenlem1 15662 lgseisen 15666 lgsquad3 15676 m1lgs 15677 2omapen 16133 pw1mapen 16135 |
| Copyright terms: Public domain | W3C validator |