| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12i | GIF version | ||
| Description: mp3an 1348 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an12i.1 | ⊢ 𝜑 |
| mp3an12i.2 | ⊢ 𝜓 |
| mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
| mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an12i | ⊢ (𝜒 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
| 2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
| 4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 2, 3, 4 | mp3an12 1338 | . 2 ⊢ (𝜃 → 𝜏) |
| 6 | 1, 5 | syl 14 | 1 ⊢ (𝜒 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: map1 6880 exmidpw2en 6982 suplocsrlempr 7893 geo2lim 11700 fprodge0 11821 fprodge1 11823 3dvds 12048 oddp1d2 12074 bezoutlema 12193 bezoutlemb 12194 pythagtriplem1 12461 exmidunben 12670 psrelbas 14309 psraddcl 14314 psr0cl 14315 psr0lid 14316 psrnegcl 14317 psrlinv 14318 psrgrp 14319 psr1clfi 14322 mplsubgfilemcl 14333 ismet 14688 isxmet 14689 dvidrelem 15036 coseq0negpitopi 15180 cosq34lt1 15194 cos02pilt1 15195 logdivlti 15225 1sgm2ppw 15339 lgseisenlem1 15419 lgseisen 15423 lgsquad3 15433 m1lgs 15434 2omapen 15751 |
| Copyright terms: Public domain | W3C validator |