ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp3an12i GIF version

Theorem mp3an12i 1331
Description: mp3an 1327 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an12i.1 𝜑
mp3an12i.2 𝜓
mp3an12i.3 (𝜒𝜃)
mp3an12i.4 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
mp3an12i (𝜒𝜏)

Proof of Theorem mp3an12i
StepHypRef Expression
1 mp3an12i.3 . 2 (𝜒𝜃)
2 mp3an12i.1 . . 3 𝜑
3 mp3an12i.2 . . 3 𝜓
4 mp3an12i.4 . . 3 ((𝜑𝜓𝜃) → 𝜏)
52, 3, 4mp3an12 1317 . 2 (𝜃𝜏)
61, 5syl 14 1 (𝜒𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  map1  6774  suplocsrlempr  7744  geo2lim  11453  fprodge0  11574  fprodge1  11576  oddp1d2  11823  bezoutlema  11928  bezoutlemb  11929  pythagtriplem1  12193  exmidunben  12355  ismet  12944  isxmet  12945  coseq0negpitopi  13357  cosq34lt1  13371  cos02pilt1  13372  logdivlti  13402
  Copyright terms: Public domain W3C validator