ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem1 GIF version

Theorem pythagtriplem1 12193
Description: Lemma for pythagtrip 12211. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Distinct variable groups:   𝐴,𝑛,𝑚,𝑘   𝐵,𝑛,𝑚,𝑘   𝐶,𝑛,𝑚,𝑘

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 8861 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2 nncn 8861 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3 nncn 8861 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4 sqcl 10512 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℂ → (𝑚↑2) ∈ ℂ)
54adantl 275 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
65sqcld 10582 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2)↑2) ∈ ℂ)
7 2cn 8924 . . . . . . . . . . . . . 14 2 ∈ ℂ
8 sqcl 10512 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (𝑛↑2) ∈ ℂ)
9 mulcl 7876 . . . . . . . . . . . . . . 15 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
104, 8, 9syl2anr 288 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
11 mulcl 7876 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
127, 10, 11sylancr 411 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
136, 12subcld 8205 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) ∈ ℂ)
148adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
1514sqcld 10582 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛↑2)↑2) ∈ ℂ)
16 mulcl 7876 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
1716ancoms 266 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
18 mulcl 7876 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
197, 17, 18sylancr 411 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
2019sqcld 10582 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
2113, 15, 20add32d 8062 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)))
226, 12, 20subadd23d 8227 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))))
23 sqmul 10513 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
247, 17, 23sylancr 411 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
25 sq2 10546 . . . . . . . . . . . . . . . . . . 19 (2↑2) = 4
2625a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2↑2) = 4)
27 sqmul 10513 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2827ancoms 266 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2926, 28oveq12d 5859 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2↑2) · ((𝑚 · 𝑛)↑2)) = (4 · ((𝑚↑2) · (𝑛↑2))))
3024, 29eqtrd 2198 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = (4 · ((𝑚↑2) · (𝑛↑2))))
3130oveq1d 5856 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
32 4cn 8931 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
33 subdir 8280 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
3432, 7, 10, 33mp3an12i 1331 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
35 2p2e4 8980 . . . . . . . . . . . . . . . . . 18 (2 + 2) = 4
3632, 7, 7, 35subaddrii 8183 . . . . . . . . . . . . . . . . 17 (4 − 2) = 2
3736oveq1i 5851 . . . . . . . . . . . . . . . 16 ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = (2 · ((𝑚↑2) · (𝑛↑2)))
3834, 37eqtr3di 2213 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
3931, 38eqtrd 2198 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
4039oveq2d 5857 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4122, 40eqtrd 2198 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4241oveq1d 5856 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4321, 42eqtrd 2198 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
44 binom2sub 10564 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
454, 8, 44syl2anr 288 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4645oveq1d 5856 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)))
47 binom2 10562 . . . . . . . . . . 11 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
484, 8, 47syl2anr 288 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4943, 46, 483eqtr4d 2208 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
50493adant3 1007 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
5150oveq2d 5857 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
52 simp3 989 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝑘 ∈ ℂ)
5343ad2ant2 1009 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
5483ad2ant1 1008 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
5553, 54subcld 8205 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) − (𝑛↑2)) ∈ ℂ)
5652, 55sqmuld 10596 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)))
57173adant3 1007 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
587, 57, 18sylancr 411 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
5952, 58sqmuld 10596 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · (2 · (𝑚 · 𝑛)))↑2) = ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2)))
6056, 59oveq12d 5859 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
61 sqcl 10512 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘↑2) ∈ ℂ)
62613ad2ant3 1010 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘↑2) ∈ ℂ)
6355sqcld 10582 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) ∈ ℂ)
6458sqcld 10582 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
6562, 63, 64adddid 7919 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
6660, 65eqtr4d 2201 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))))
6753, 54addcld 7914 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ)
6852, 67sqmuld 10596 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
6951, 66, 683eqtr4d 2208 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
701, 2, 3, 69syl3an 1270 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
71 oveq1 5848 . . . . . . . 8 (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) → (𝐴↑2) = ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2))
72 oveq1 5848 . . . . . . . 8 (𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) → (𝐵↑2) = ((𝑘 · (2 · (𝑚 · 𝑛)))↑2))
7371, 72oveqan12d 5860 . . . . . . 7 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
74733adant3 1007 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
75 oveq1 5848 . . . . . . 7 (𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
76753ad2ant3 1010 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
7774, 76eqeq12d 2180 . . . . 5 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2)))
7870, 77syl5ibrcom 156 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
79783expa 1193 . . 3 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8079rexlimdva 2582 . 2 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8180rexlimivv 2588 1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wrex 2444  (class class class)co 5841  cc 7747   + caddc 7752   · cmul 7754  cmin 8065  cn 8853  2c2 8904  4c4 8906  cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  pythagtriplem2  12194
  Copyright terms: Public domain W3C validator