ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem1 GIF version

Theorem pythagtriplem1 12403
Description: Lemma for pythagtrip 12421. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Distinct variable groups:   𝐴,𝑛,𝑚,𝑘   𝐵,𝑛,𝑚,𝑘   𝐶,𝑛,𝑚,𝑘

Proof of Theorem pythagtriplem1
StepHypRef Expression
1 nncn 8990 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2 nncn 8990 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3 nncn 8990 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4 sqcl 10671 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℂ → (𝑚↑2) ∈ ℂ)
54adantl 277 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
65sqcld 10742 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2)↑2) ∈ ℂ)
7 2cn 9053 . . . . . . . . . . . . . 14 2 ∈ ℂ
8 sqcl 10671 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (𝑛↑2) ∈ ℂ)
9 mulcl 7999 . . . . . . . . . . . . . . 15 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
104, 8, 9syl2anr 290 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚↑2) · (𝑛↑2)) ∈ ℂ)
11 mulcl 7999 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
127, 10, 11sylancr 414 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · ((𝑚↑2) · (𝑛↑2))) ∈ ℂ)
136, 12subcld 8330 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) ∈ ℂ)
148adantr 276 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
1514sqcld 10742 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑛↑2)↑2) ∈ ℂ)
16 mulcl 7999 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
1716ancoms 268 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
18 mulcl 7999 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
197, 17, 18sylancr 414 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
2019sqcld 10742 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
2113, 15, 20add32d 8187 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)))
226, 12, 20subadd23d 8352 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))))
23 sqmul 10672 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
247, 17, 23sylancr 414 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = ((2↑2) · ((𝑚 · 𝑛)↑2)))
25 sq2 10706 . . . . . . . . . . . . . . . . . . 19 (2↑2) = 4
2625a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2↑2) = 4)
27 sqmul 10672 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2827ancoms 268 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((𝑚 · 𝑛)↑2) = ((𝑚↑2) · (𝑛↑2)))
2926, 28oveq12d 5936 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2↑2) · ((𝑚 · 𝑛)↑2)) = (4 · ((𝑚↑2) · (𝑛↑2))))
3024, 29eqtrd 2226 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) = (4 · ((𝑚↑2) · (𝑛↑2))))
3130oveq1d 5933 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
32 4cn 9060 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
33 subdir 8405 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ ((𝑚↑2) · (𝑛↑2)) ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
3432, 7, 10, 33mp3an12i 1352 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))))
35 2p2e4 9109 . . . . . . . . . . . . . . . . . 18 (2 + 2) = 4
3632, 7, 7, 35subaddrii 8308 . . . . . . . . . . . . . . . . 17 (4 − 2) = 2
3736oveq1i 5928 . . . . . . . . . . . . . . . 16 ((4 − 2) · ((𝑚↑2) · (𝑛↑2))) = (2 · ((𝑚↑2) · (𝑛↑2)))
3834, 37eqtr3di 2241 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((4 · ((𝑚↑2) · (𝑛↑2))) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
3931, 38eqtrd 2226 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) = (2 · ((𝑚↑2) · (𝑛↑2))))
4039oveq2d 5934 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2)↑2) + (((2 · (𝑚 · 𝑛))↑2) − (2 · ((𝑚↑2) · (𝑛↑2))))) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4122, 40eqtrd 2226 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))))
4241oveq1d 5933 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((2 · (𝑚 · 𝑛))↑2)) + ((𝑛↑2)↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4321, 42eqtrd 2226 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
44 binom2sub 10724 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
454, 8, 44syl2anr 290 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) = ((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4645oveq1d 5933 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((((𝑚↑2)↑2) − (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)) + ((2 · (𝑚 · 𝑛))↑2)))
47 binom2 10722 . . . . . . . . . . 11 (((𝑚↑2) ∈ ℂ ∧ (𝑛↑2) ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
484, 8, 47syl2anr 290 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑚↑2) + (𝑛↑2))↑2) = ((((𝑚↑2)↑2) + (2 · ((𝑚↑2) · (𝑛↑2)))) + ((𝑛↑2)↑2)))
4943, 46, 483eqtr4d 2236 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
50493adant3 1019 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2)) = (((𝑚↑2) + (𝑛↑2))↑2))
5150oveq2d 5934 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
52 simp3 1001 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝑘 ∈ ℂ)
5343ad2ant2 1021 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚↑2) ∈ ℂ)
5483ad2ant1 1020 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛↑2) ∈ ℂ)
5553, 54subcld 8330 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) − (𝑛↑2)) ∈ ℂ)
5652, 55sqmuld 10756 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)))
57173adant3 1019 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 · 𝑛) ∈ ℂ)
587, 57, 18sylancr 414 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑚 · 𝑛)) ∈ ℂ)
5952, 58sqmuld 10756 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · (2 · (𝑚 · 𝑛)))↑2) = ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2)))
6056, 59oveq12d 5936 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
61 sqcl 10671 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘↑2) ∈ ℂ)
62613ad2ant3 1022 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘↑2) ∈ ℂ)
6355sqcld 10742 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑚↑2) − (𝑛↑2))↑2) ∈ ℂ)
6458sqcld 10742 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑚 · 𝑛))↑2) ∈ ℂ)
6562, 63, 64adddid 8044 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))) = (((𝑘↑2) · (((𝑚↑2) − (𝑛↑2))↑2)) + ((𝑘↑2) · ((2 · (𝑚 · 𝑛))↑2))))
6660, 65eqtr4d 2229 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘↑2) · ((((𝑚↑2) − (𝑛↑2))↑2) + ((2 · (𝑚 · 𝑛))↑2))))
6753, 54addcld 8039 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ)
6852, 67sqmuld 10756 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2) = ((𝑘↑2) · (((𝑚↑2) + (𝑛↑2))↑2)))
6951, 66, 683eqtr4d 2236 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
701, 2, 3, 69syl3an 1291 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
71 oveq1 5925 . . . . . . . 8 (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) → (𝐴↑2) = ((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2))
72 oveq1 5925 . . . . . . . 8 (𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) → (𝐵↑2) = ((𝑘 · (2 · (𝑚 · 𝑛)))↑2))
7371, 72oveqan12d 5937 . . . . . . 7 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
74733adant3 1019 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)))
75 oveq1 5925 . . . . . . 7 (𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
76753ad2ant3 1022 . . . . . 6 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (𝐶↑2) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2))
7774, 76eqeq12d 2208 . . . . 5 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ (((𝑘 · ((𝑚↑2) − (𝑛↑2)))↑2) + ((𝑘 · (2 · (𝑚 · 𝑛)))↑2)) = ((𝑘 · ((𝑚↑2) + (𝑛↑2)))↑2)))
7870, 77syl5ibrcom 157 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
79783expa 1205 . . 3 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8079rexlimdva 2611 . 2 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8180rexlimivv 2617 1 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473  (class class class)co 5918  cc 7870   + caddc 7875   · cmul 7877  cmin 8190  cn 8982  2c2 9033  4c4 9035  cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  pythagtriplem2  12404
  Copyright terms: Public domain W3C validator