ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2lim GIF version

Theorem geo2lim 11317
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
Assertion
Ref Expression
geo2lim (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geo2lim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9385 . . 3 ℕ = (ℤ‘1)
2 1zzd 9105 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
3 halfcn 8958 . . . . . . 7 (1 / 2) ∈ ℂ
43a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (1 / 2) ∈ ℂ)
5 halfre 8957 . . . . . . . . 9 (1 / 2) ∈ ℝ
6 halfge0 8960 . . . . . . . . 9 0 ≤ (1 / 2)
7 absid 10875 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
85, 6, 7mp2an 423 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
9 halflt1 8961 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 3957 . . . . . . 7 (abs‘(1 / 2)) < 1
1110a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(1 / 2)) < 1)
124, 11expcnv 11305 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) ⇝ 0)
13 id 19 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 geo2lim.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
15 nnex 8750 . . . . . . . 8 ℕ ∈ V
1615mptex 5654 . . . . . . 7 (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V
1714, 16eqeltri 2213 . . . . . 6 𝐹 ∈ V
1817a1i 9 . . . . 5 (𝐴 ∈ ℂ → 𝐹 ∈ V)
19 nnnn0 9008 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
2019adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
213a1i 9 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / 2) ∈ ℂ)
2221, 20expcld 10455 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
23 oveq2 5790 . . . . . . . 8 (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗))
24 eqid 2140 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))
2523, 24fvmptg 5505 . . . . . . 7 ((𝑗 ∈ ℕ0 ∧ ((1 / 2)↑𝑗) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2620, 22, 25syl2anc 409 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2726, 22eqeltrd 2217 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ)
28 simpl 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ ℂ)
29 2nn 8905 . . . . . . . . 9 2 ∈ ℕ
30 nnexpcl 10337 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
3129, 20, 30sylancr 411 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
3231nncnd 8758 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
3331nnap0d 8790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) # 0)
3428, 32, 33divrecapd 8577 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗))))
35 simpr 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3628, 32, 33divclapd 8574 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ)
37 oveq2 5790 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3837oveq2d 5798 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗)))
3938, 14fvmptg 5505 . . . . . . 7 ((𝑗 ∈ ℕ ∧ (𝐴 / (2↑𝑗)) ∈ ℂ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
4035, 36, 39syl2anc 409 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
41 2cn 8815 . . . . . . . . 9 2 ∈ ℂ
42 2ap0 8837 . . . . . . . . 9 2 # 0
43 nnz 9097 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
4443adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
45 exprecap 10365 . . . . . . . . 9 ((2 ∈ ℂ ∧ 2 # 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4641, 42, 44, 45mp3an12i 1320 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4726, 46eqtrd 2173 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗)))
4847oveq2d 5798 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗))))
4934, 40, 483eqtr4d 2183 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)))
501, 2, 12, 13, 18, 27, 49climmulc2 11132 . . . 4 (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0))
51 mul01 8175 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
5250, 51breqtrd 3962 . . 3 (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
53 seqex 10251 . . . 4 seq1( + , 𝐹) ∈ V
5453a1i 9 . . 3 (𝐴 ∈ ℂ → seq1( + , 𝐹) ∈ V)
5540, 36eqeltrd 2217 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5640oveq2d 5798 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹𝑗)) = (𝐴 − (𝐴 / (2↑𝑗))))
57 geo2sum 11315 . . . . 5 ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
5857ancoms 266 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
59 elnnuz 9386 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
6059biimpri 132 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
6160adantl 275 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
62 simpll 519 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
6341a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 ∈ ℂ)
6461nnnn0d 9054 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ0)
6563, 64expcld 10455 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) ∈ ℂ)
6642a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 # 0)
6761nnzd 9196 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℤ)
6863, 66, 67expap0d 10461 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) # 0)
6962, 65, 68divclapd 8574 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐴 / (2↑𝑛)) ∈ ℂ)
70 oveq2 5790 . . . . . . . 8 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
7170oveq2d 5798 . . . . . . 7 (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛)))
7271, 14fvmptg 5505 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 / (2↑𝑛)) ∈ ℂ) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7361, 69, 72syl2anc 409 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7435, 1eleqtrdi 2233 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
7573, 74, 69fsum3ser 11198 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗))
7656, 58, 753eqtr2rd 2180 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) = (𝐴 − (𝐹𝑗)))
771, 2, 52, 13, 54, 55, 76climsubc2 11134 . 2 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ (𝐴 − 0))
78 subid1 8006 . 2 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
7977, 78breqtrd 3962 1 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  Vcvv 2689   class class class wbr 3937  cmpt 3997  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cmin 7957   # cap 8367   / cdiv 8456  cn 8744  2c2 8795  0cn0 9001  cz 9078  cuz 9350  ...cfz 9821  seqcseq 10249  cexp 10323  abscabs 10801  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  trilpolemeq1  13408
  Copyright terms: Public domain W3C validator