ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2lim GIF version

Theorem geo2lim 11698
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
Assertion
Ref Expression
geo2lim (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geo2lim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9654 . . 3 ℕ = (ℤ‘1)
2 1zzd 9370 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
3 halfcn 9222 . . . . . . 7 (1 / 2) ∈ ℂ
43a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (1 / 2) ∈ ℂ)
5 halfre 9221 . . . . . . . . 9 (1 / 2) ∈ ℝ
6 halfge0 9224 . . . . . . . . 9 0 ≤ (1 / 2)
7 absid 11253 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
85, 6, 7mp2an 426 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
9 halflt1 9225 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 4055 . . . . . . 7 (abs‘(1 / 2)) < 1
1110a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(1 / 2)) < 1)
124, 11expcnv 11686 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) ⇝ 0)
13 id 19 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 geo2lim.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
15 nnex 9013 . . . . . . . 8 ℕ ∈ V
1615mptex 5791 . . . . . . 7 (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V
1714, 16eqeltri 2269 . . . . . 6 𝐹 ∈ V
1817a1i 9 . . . . 5 (𝐴 ∈ ℂ → 𝐹 ∈ V)
19 nnnn0 9273 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
2019adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
213a1i 9 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / 2) ∈ ℂ)
2221, 20expcld 10782 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
23 oveq2 5933 . . . . . . . 8 (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗))
24 eqid 2196 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))
2523, 24fvmptg 5640 . . . . . . 7 ((𝑗 ∈ ℕ0 ∧ ((1 / 2)↑𝑗) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2620, 22, 25syl2anc 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2726, 22eqeltrd 2273 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ)
28 simpl 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ ℂ)
29 2nn 9169 . . . . . . . . 9 2 ∈ ℕ
30 nnexpcl 10661 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
3129, 20, 30sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
3231nncnd 9021 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
3331nnap0d 9053 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) # 0)
3428, 32, 33divrecapd 8837 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗))))
35 simpr 110 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3628, 32, 33divclapd 8834 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ)
37 oveq2 5933 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3837oveq2d 5941 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗)))
3938, 14fvmptg 5640 . . . . . . 7 ((𝑗 ∈ ℕ ∧ (𝐴 / (2↑𝑗)) ∈ ℂ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
4035, 36, 39syl2anc 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
41 2cn 9078 . . . . . . . . 9 2 ∈ ℂ
42 2ap0 9100 . . . . . . . . 9 2 # 0
43 nnz 9362 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
4443adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
45 exprecap 10689 . . . . . . . . 9 ((2 ∈ ℂ ∧ 2 # 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4641, 42, 44, 45mp3an12i 1352 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4726, 46eqtrd 2229 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗)))
4847oveq2d 5941 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗))))
4934, 40, 483eqtr4d 2239 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)))
501, 2, 12, 13, 18, 27, 49climmulc2 11513 . . . 4 (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0))
51 mul01 8432 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
5250, 51breqtrd 4060 . . 3 (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
53 seqex 10558 . . . 4 seq1( + , 𝐹) ∈ V
5453a1i 9 . . 3 (𝐴 ∈ ℂ → seq1( + , 𝐹) ∈ V)
5540, 36eqeltrd 2273 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5640oveq2d 5941 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹𝑗)) = (𝐴 − (𝐴 / (2↑𝑗))))
57 geo2sum 11696 . . . . 5 ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
5857ancoms 268 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
59 elnnuz 9655 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
6059biimpri 133 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
6160adantl 277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
62 simpll 527 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
6341a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 ∈ ℂ)
6461nnnn0d 9319 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ0)
6563, 64expcld 10782 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) ∈ ℂ)
6642a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 # 0)
6761nnzd 9464 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℤ)
6863, 66, 67expap0d 10788 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) # 0)
6962, 65, 68divclapd 8834 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐴 / (2↑𝑛)) ∈ ℂ)
70 oveq2 5933 . . . . . . . 8 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
7170oveq2d 5941 . . . . . . 7 (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛)))
7271, 14fvmptg 5640 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 / (2↑𝑛)) ∈ ℂ) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7361, 69, 72syl2anc 411 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7435, 1eleqtrdi 2289 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
7573, 74, 69fsum3ser 11579 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗))
7656, 58, 753eqtr2rd 2236 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) = (𝐴 − (𝐹𝑗)))
771, 2, 52, 13, 54, 55, 76climsubc2 11515 . 2 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ (𝐴 − 0))
78 subid1 8263 . 2 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
7977, 78breqtrd 4060 1 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   # cap 8625   / cdiv 8716  cn 9007  2c2 9058  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  cexp 10647  abscabs 11179  cli 11460  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  trilpolemeq1  15771
  Copyright terms: Public domain W3C validator