Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2lim GIF version

Theorem geo2lim 11236
 Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
Assertion
Ref Expression
geo2lim (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geo2lim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9313 . . 3 ℕ = (ℤ‘1)
2 1zzd 9035 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
3 halfcn 8888 . . . . . . 7 (1 / 2) ∈ ℂ
43a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (1 / 2) ∈ ℂ)
5 halfre 8887 . . . . . . . . 9 (1 / 2) ∈ ℝ
6 halfge0 8890 . . . . . . . . 9 0 ≤ (1 / 2)
7 absid 10794 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
85, 6, 7mp2an 420 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
9 halflt1 8891 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 3917 . . . . . . 7 (abs‘(1 / 2)) < 1
1110a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(1 / 2)) < 1)
124, 11expcnv 11224 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) ⇝ 0)
13 id 19 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 geo2lim.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
15 nnex 8686 . . . . . . . 8 ℕ ∈ V
1615mptex 5612 . . . . . . 7 (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V
1714, 16eqeltri 2188 . . . . . 6 𝐹 ∈ V
1817a1i 9 . . . . 5 (𝐴 ∈ ℂ → 𝐹 ∈ V)
19 nnnn0 8938 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
2019adantl 273 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
213a1i 9 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / 2) ∈ ℂ)
2221, 20expcld 10375 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
23 oveq2 5748 . . . . . . . 8 (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗))
24 eqid 2115 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))
2523, 24fvmptg 5463 . . . . . . 7 ((𝑗 ∈ ℕ0 ∧ ((1 / 2)↑𝑗) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2620, 22, 25syl2anc 406 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2726, 22eqeltrd 2192 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ)
28 simpl 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ ℂ)
29 2nn 8835 . . . . . . . . 9 2 ∈ ℕ
30 nnexpcl 10257 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
3129, 20, 30sylancr 408 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
3231nncnd 8694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
3331nnap0d 8726 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) # 0)
3428, 32, 33divrecapd 8516 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗))))
35 simpr 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3628, 32, 33divclapd 8513 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ)
37 oveq2 5748 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3837oveq2d 5756 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗)))
3938, 14fvmptg 5463 . . . . . . 7 ((𝑗 ∈ ℕ ∧ (𝐴 / (2↑𝑗)) ∈ ℂ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
4035, 36, 39syl2anc 406 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
41 2cn 8751 . . . . . . . . 9 2 ∈ ℂ
42 2ap0 8773 . . . . . . . . 9 2 # 0
43 nnz 9027 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
4443adantl 273 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
45 exprecap 10285 . . . . . . . . 9 ((2 ∈ ℂ ∧ 2 # 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4641, 42, 44, 45mp3an12i 1302 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4726, 46eqtrd 2148 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗)))
4847oveq2d 5756 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗))))
4934, 40, 483eqtr4d 2158 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)))
501, 2, 12, 13, 18, 27, 49climmulc2 11051 . . . 4 (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0))
51 mul01 8115 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
5250, 51breqtrd 3922 . . 3 (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
53 seqex 10171 . . . 4 seq1( + , 𝐹) ∈ V
5453a1i 9 . . 3 (𝐴 ∈ ℂ → seq1( + , 𝐹) ∈ V)
5540, 36eqeltrd 2192 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5640oveq2d 5756 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹𝑗)) = (𝐴 − (𝐴 / (2↑𝑗))))
57 geo2sum 11234 . . . . 5 ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
5857ancoms 266 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
59 elnnuz 9314 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
6059biimpri 132 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
6160adantl 273 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
62 simpll 501 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
6341a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 ∈ ℂ)
6461nnnn0d 8984 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ0)
6563, 64expcld 10375 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) ∈ ℂ)
6642a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 # 0)
6761nnzd 9126 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℤ)
6863, 66, 67expap0d 10381 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) # 0)
6962, 65, 68divclapd 8513 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐴 / (2↑𝑛)) ∈ ℂ)
70 oveq2 5748 . . . . . . . 8 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
7170oveq2d 5756 . . . . . . 7 (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛)))
7271, 14fvmptg 5463 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 / (2↑𝑛)) ∈ ℂ) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7361, 69, 72syl2anc 406 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7435, 1syl6eleq 2208 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
7573, 74, 69fsum3ser 11117 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗))
7656, 58, 753eqtr2rd 2155 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) = (𝐴 − (𝐹𝑗)))
771, 2, 52, 13, 54, 55, 76climsubc2 11053 . 2 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ (𝐴 − 0))
78 subid1 7946 . 2 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
7977, 78breqtrd 3922 1 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1314   ∈ wcel 1463  Vcvv 2658   class class class wbr 3897   ↦ cmpt 3957  ‘cfv 5091  (class class class)co 5740  ℂcc 7582  ℝcr 7583  0cc0 7584  1c1 7585   + caddc 7587   · cmul 7589   < clt 7764   ≤ cle 7765   − cmin 7897   # cap 8306   / cdiv 8395  ℕcn 8680  2c2 8731  ℕ0cn0 8931  ℤcz 9008  ℤ≥cuz 9278  ...cfz 9741  seqcseq 10169  ↑cexp 10243  abscabs 10720   ⇝ cli 10998  Σcsu 11073 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704 This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-fz 9742  df-fzo 9871  df-seqfrec 10170  df-exp 10244  df-ihash 10473  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-clim 10999  df-sumdc 11074 This theorem is referenced by:  trilpolemeq1  13067
 Copyright terms: Public domain W3C validator