Step | Hyp | Ref
| Expression |
1 | | elex 2749 |
. . . . 5
β’ (π β π΄ β π β V) |
2 | | fnmap 6655 |
. . . . . . . 8
β’
βπ Fn (V Γ V) |
3 | | xrex 9856 |
. . . . . . . 8
β’
β* β V |
4 | | sqxpexg 4743 |
. . . . . . . 8
β’ (π β V β (π Γ π) β V) |
5 | | fnovex 5908 |
. . . . . . . 8
β’ ((
βπ Fn (V Γ V) β§ β* β V
β§ (π Γ π) β V) β
(β* βπ (π Γ π)) β V) |
6 | 2, 3, 4, 5 | mp3an12i 1341 |
. . . . . . 7
β’ (π β V β
(β* βπ (π Γ π)) β V) |
7 | | rabexg 4147 |
. . . . . . 7
β’
((β* βπ (π Γ π)) β V β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β V) |
8 | 6, 7 | syl 14 |
. . . . . 6
β’ (π β V β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β V) |
9 | | xpeq12 4646 |
. . . . . . . . . 10
β’ ((π‘ = π β§ π‘ = π) β (π‘ Γ π‘) = (π Γ π)) |
10 | 9 | anidms 397 |
. . . . . . . . 9
β’ (π‘ = π β (π‘ Γ π‘) = (π Γ π)) |
11 | 10 | oveq2d 5891 |
. . . . . . . 8
β’ (π‘ = π β (β*
βπ (π‘ Γ π‘)) = (β*
βπ (π Γ π))) |
12 | | raleq 2673 |
. . . . . . . . . . 11
β’ (π‘ = π β (βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))) |
13 | 12 | anbi2d 464 |
. . . . . . . . . 10
β’ (π‘ = π β ((((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
14 | 13 | raleqbi1dv 2681 |
. . . . . . . . 9
β’ (π‘ = π β (βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
15 | 14 | raleqbi1dv 2681 |
. . . . . . . 8
β’ (π‘ = π β (βπ₯ β π‘ βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
16 | 11, 15 | rabeqbidv 2733 |
. . . . . . 7
β’ (π‘ = π β {π β (β*
βπ (π‘ Γ π‘)) β£ βπ₯ β π‘ βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} = {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
17 | | df-xmet 13451 |
. . . . . . 7
β’
βMet = (π‘
β V β¦ {π β
(β* βπ (π‘ Γ π‘)) β£ βπ₯ β π‘ βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
18 | 16, 17 | fvmptg 5593 |
. . . . . 6
β’ ((π β V β§ {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β V) β (βMetβπ) = {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
19 | 8, 18 | mpdan 421 |
. . . . 5
β’ (π β V β
(βMetβπ) =
{π β
(β* βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
20 | 1, 19 | syl 14 |
. . . 4
β’ (π β π΄ β (βMetβπ) = {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
21 | 20 | eleq2d 2247 |
. . 3
β’ (π β π΄ β (π· β (βMetβπ) β π· β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))})) |
22 | | oveq 5881 |
. . . . . . . 8
β’ (π = π· β (π₯ππ¦) = (π₯π·π¦)) |
23 | 22 | eqeq1d 2186 |
. . . . . . 7
β’ (π = π· β ((π₯ππ¦) = 0 β (π₯π·π¦) = 0)) |
24 | 23 | bibi1d 233 |
. . . . . 6
β’ (π = π· β (((π₯ππ¦) = 0 β π₯ = π¦) β ((π₯π·π¦) = 0 β π₯ = π¦))) |
25 | | oveq 5881 |
. . . . . . . . 9
β’ (π = π· β (π§ππ₯) = (π§π·π₯)) |
26 | | oveq 5881 |
. . . . . . . . 9
β’ (π = π· β (π§ππ¦) = (π§π·π¦)) |
27 | 25, 26 | oveq12d 5893 |
. . . . . . . 8
β’ (π = π· β ((π§ππ₯) +π (π§ππ¦)) = ((π§π·π₯) +π (π§π·π¦))) |
28 | 22, 27 | breq12d 4017 |
. . . . . . 7
β’ (π = π· β ((π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
29 | 28 | ralbidv 2477 |
. . . . . 6
β’ (π = π· β (βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
30 | 24, 29 | anbi12d 473 |
. . . . 5
β’ (π = π· β ((((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
31 | 30 | 2ralbidv 2501 |
. . . 4
β’ (π = π· β (βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
32 | 31 | elrab 2894 |
. . 3
β’ (π· β {π β (β*
βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β (π· β (β*
βπ (π Γ π)) β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
33 | 21, 32 | bitrdi 196 |
. 2
β’ (π β π΄ β (π· β (βMetβπ) β (π· β (β*
βπ (π Γ π)) β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
34 | | sqxpexg 4743 |
. . . 4
β’ (π β π΄ β (π Γ π) β V) |
35 | | elmapg 6661 |
. . . 4
β’
((β* β V β§ (π Γ π) β V) β (π· β (β*
βπ (π Γ π)) β π·:(π Γ π)βΆβ*)) |
36 | 3, 34, 35 | sylancr 414 |
. . 3
β’ (π β π΄ β (π· β (β*
βπ (π Γ π)) β π·:(π Γ π)βΆβ*)) |
37 | 36 | anbi1d 465 |
. 2
β’ (π β π΄ β ((π· β (β*
βπ (π Γ π)) β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
38 | 33, 37 | bitrd 188 |
1
β’ (π β π΄ β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |