ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemb GIF version

Theorem bezoutlemb 12167
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
bezoutlema.a (𝜃𝐴 ∈ ℕ0)
bezoutlema.b (𝜃𝐵 ∈ ℕ0)
Assertion
Ref Expression
bezoutlemb (𝜃[𝐵 / 𝑟]𝜑)
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡   𝐵,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑠,𝑟)   𝜃(𝑡,𝑠,𝑟)

Proof of Theorem bezoutlemb
StepHypRef Expression
1 0z 9337 . . 3 0 ∈ ℤ
2 1z 9352 . . 3 1 ∈ ℤ
3 bezoutlema.a . . . . . . 7 (𝜃𝐴 ∈ ℕ0)
43nn0cnd 9304 . . . . . 6 (𝜃𝐴 ∈ ℂ)
54mul01d 8419 . . . . 5 (𝜃 → (𝐴 · 0) = 0)
65oveq1d 5937 . . . 4 (𝜃 → ((𝐴 · 0) + (𝐵 · 1)) = (0 + (𝐵 · 1)))
7 bezoutlema.b . . . . . . 7 (𝜃𝐵 ∈ ℕ0)
87nn0cnd 9304 . . . . . 6 (𝜃𝐵 ∈ ℂ)
9 1cnd 8042 . . . . . 6 (𝜃 → 1 ∈ ℂ)
108, 9mulcld 8047 . . . . 5 (𝜃 → (𝐵 · 1) ∈ ℂ)
1110addlidd 8176 . . . 4 (𝜃 → (0 + (𝐵 · 1)) = (𝐵 · 1))
128mulridd 8043 . . . 4 (𝜃 → (𝐵 · 1) = 𝐵)
136, 11, 123eqtrrd 2234 . . 3 (𝜃𝐵 = ((𝐴 · 0) + (𝐵 · 1)))
14 oveq2 5930 . . . . . 6 (𝑠 = 0 → (𝐴 · 𝑠) = (𝐴 · 0))
1514oveq1d 5937 . . . . 5 (𝑠 = 0 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 𝑡)))
1615eqeq2d 2208 . . . 4 (𝑠 = 0 → (𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡))))
17 oveq2 5930 . . . . . 6 (𝑡 = 1 → (𝐵 · 𝑡) = (𝐵 · 1))
1817oveq2d 5938 . . . . 5 (𝑡 = 1 → ((𝐴 · 0) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 1)))
1918eqeq2d 2208 . . . 4 (𝑡 = 1 → (𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 1))))
2016, 19rspc2ev 2883 . . 3 ((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
211, 2, 13, 20mp3an12i 1352 . 2 (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
22 bezoutlema.is-bezout . . . . 5 (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
23 eqeq1 2203 . . . . . 6 (𝑟 = 𝐵 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
24232rexbidv 2522 . . . . 5 (𝑟 = 𝐵 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2522, 24bitrid 192 . . . 4 (𝑟 = 𝐵 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2625sbcieg 3022 . . 3 (𝐵 ∈ ℕ0 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
277, 26syl 14 . 2 (𝜃 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2821, 27mpbird 167 1 (𝜃[𝐵 / 𝑟]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wrex 2476  [wsbc 2989  (class class class)co 5922  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  0cn0 9249  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  bezoutlemex  12168
  Copyright terms: Public domain W3C validator