![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bezoutlemb | GIF version |
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.) |
Ref | Expression |
---|---|
bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
Ref | Expression |
---|---|
bezoutlemb | ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9331 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 1z 9346 | . . 3 ⊢ 1 ∈ ℤ | |
3 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
4 | 3 | nn0cnd 9298 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
5 | 4 | mul01d 8414 | . . . . 5 ⊢ (𝜃 → (𝐴 · 0) = 0) |
6 | 5 | oveq1d 5934 | . . . 4 ⊢ (𝜃 → ((𝐴 · 0) + (𝐵 · 1)) = (0 + (𝐵 · 1))) |
7 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
8 | 7 | nn0cnd 9298 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
9 | 1cnd 8037 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
10 | 8, 9 | mulcld 8042 | . . . . 5 ⊢ (𝜃 → (𝐵 · 1) ∈ ℂ) |
11 | 10 | addlidd 8171 | . . . 4 ⊢ (𝜃 → (0 + (𝐵 · 1)) = (𝐵 · 1)) |
12 | 8 | mulridd 8038 | . . . 4 ⊢ (𝜃 → (𝐵 · 1) = 𝐵) |
13 | 6, 11, 12 | 3eqtrrd 2231 | . . 3 ⊢ (𝜃 → 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) |
14 | oveq2 5927 | . . . . . 6 ⊢ (𝑠 = 0 → (𝐴 · 𝑠) = (𝐴 · 0)) | |
15 | 14 | oveq1d 5934 | . . . . 5 ⊢ (𝑠 = 0 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 𝑡))) |
16 | 15 | eqeq2d 2205 | . . . 4 ⊢ (𝑠 = 0 → (𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)))) |
17 | oveq2 5927 | . . . . . 6 ⊢ (𝑡 = 1 → (𝐵 · 𝑡) = (𝐵 · 1)) | |
18 | 17 | oveq2d 5935 | . . . . 5 ⊢ (𝑡 = 1 → ((𝐴 · 0) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 1))) |
19 | 18 | eqeq2d 2205 | . . . 4 ⊢ (𝑡 = 1 → (𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 1)))) |
20 | 16, 19 | rspc2ev 2880 | . . 3 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
21 | 1, 2, 13, 20 | mp3an12i 1352 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
23 | eqeq1 2200 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
24 | 23 | 2rexbidv 2519 | . . . . 5 ⊢ (𝑟 = 𝐵 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
26 | 25 | sbcieg 3019 | . . 3 ⊢ (𝐵 ∈ ℕ0 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 [wsbc 2986 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 ℕ0cn0 9243 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 |
This theorem is referenced by: bezoutlemex 12141 |
Copyright terms: Public domain | W3C validator |