| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlemb | GIF version | ||
| Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
| bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bezoutlemb | ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9383 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | 1z 9398 | . . 3 ⊢ 1 ∈ ℤ | |
| 3 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
| 4 | 3 | nn0cnd 9350 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
| 5 | 4 | mul01d 8465 | . . . . 5 ⊢ (𝜃 → (𝐴 · 0) = 0) |
| 6 | 5 | oveq1d 5959 | . . . 4 ⊢ (𝜃 → ((𝐴 · 0) + (𝐵 · 1)) = (0 + (𝐵 · 1))) |
| 7 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
| 8 | 7 | nn0cnd 9350 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
| 9 | 1cnd 8088 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
| 10 | 8, 9 | mulcld 8093 | . . . . 5 ⊢ (𝜃 → (𝐵 · 1) ∈ ℂ) |
| 11 | 10 | addlidd 8222 | . . . 4 ⊢ (𝜃 → (0 + (𝐵 · 1)) = (𝐵 · 1)) |
| 12 | 8 | mulridd 8089 | . . . 4 ⊢ (𝜃 → (𝐵 · 1) = 𝐵) |
| 13 | 6, 11, 12 | 3eqtrrd 2243 | . . 3 ⊢ (𝜃 → 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) |
| 14 | oveq2 5952 | . . . . . 6 ⊢ (𝑠 = 0 → (𝐴 · 𝑠) = (𝐴 · 0)) | |
| 15 | 14 | oveq1d 5959 | . . . . 5 ⊢ (𝑠 = 0 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 𝑡))) |
| 16 | 15 | eqeq2d 2217 | . . . 4 ⊢ (𝑠 = 0 → (𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)))) |
| 17 | oveq2 5952 | . . . . . 6 ⊢ (𝑡 = 1 → (𝐵 · 𝑡) = (𝐵 · 1)) | |
| 18 | 17 | oveq2d 5960 | . . . . 5 ⊢ (𝑡 = 1 → ((𝐴 · 0) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 1))) |
| 19 | 18 | eqeq2d 2217 | . . . 4 ⊢ (𝑡 = 1 → (𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 1)))) |
| 20 | 16, 19 | rspc2ev 2892 | . . 3 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 21 | 1, 2, 13, 20 | mp3an12i 1354 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
| 23 | eqeq1 2212 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
| 24 | 23 | 2rexbidv 2531 | . . . . 5 ⊢ (𝑟 = 𝐵 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 26 | 25 | sbcieg 3031 | . . 3 ⊢ (𝐵 ∈ ℕ0 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 [wsbc 2998 (class class class)co 5944 0cc0 7925 1c1 7926 + caddc 7928 · cmul 7930 ℕ0cn0 9295 ℤcz 9372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: bezoutlemex 12322 |
| Copyright terms: Public domain | W3C validator |