Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bezoutlemb | GIF version |
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.) |
Ref | Expression |
---|---|
bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
Ref | Expression |
---|---|
bezoutlemb | ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9202 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 1z 9217 | . . 3 ⊢ 1 ∈ ℤ | |
3 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
4 | 3 | nn0cnd 9169 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
5 | 4 | mul01d 8291 | . . . . 5 ⊢ (𝜃 → (𝐴 · 0) = 0) |
6 | 5 | oveq1d 5857 | . . . 4 ⊢ (𝜃 → ((𝐴 · 0) + (𝐵 · 1)) = (0 + (𝐵 · 1))) |
7 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
8 | 7 | nn0cnd 9169 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
9 | 1cnd 7915 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
10 | 8, 9 | mulcld 7919 | . . . . 5 ⊢ (𝜃 → (𝐵 · 1) ∈ ℂ) |
11 | 10 | addid2d 8048 | . . . 4 ⊢ (𝜃 → (0 + (𝐵 · 1)) = (𝐵 · 1)) |
12 | 8 | mulid1d 7916 | . . . 4 ⊢ (𝜃 → (𝐵 · 1) = 𝐵) |
13 | 6, 11, 12 | 3eqtrrd 2203 | . . 3 ⊢ (𝜃 → 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) |
14 | oveq2 5850 | . . . . . 6 ⊢ (𝑠 = 0 → (𝐴 · 𝑠) = (𝐴 · 0)) | |
15 | 14 | oveq1d 5857 | . . . . 5 ⊢ (𝑠 = 0 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 𝑡))) |
16 | 15 | eqeq2d 2177 | . . . 4 ⊢ (𝑠 = 0 → (𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)))) |
17 | oveq2 5850 | . . . . . 6 ⊢ (𝑡 = 1 → (𝐵 · 𝑡) = (𝐵 · 1)) | |
18 | 17 | oveq2d 5858 | . . . . 5 ⊢ (𝑡 = 1 → ((𝐴 · 0) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 1))) |
19 | 18 | eqeq2d 2177 | . . . 4 ⊢ (𝑡 = 1 → (𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 1)))) |
20 | 16, 19 | rspc2ev 2845 | . . 3 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
21 | 1, 2, 13, 20 | mp3an12i 1331 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
23 | eqeq1 2172 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
24 | 23 | 2rexbidv 2491 | . . . . 5 ⊢ (𝑟 = 𝐵 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
25 | 22, 24 | syl5bb 191 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
26 | 25 | sbcieg 2983 | . . 3 ⊢ (𝐵 ∈ ℕ0 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
28 | 21, 27 | mpbird 166 | 1 ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 [wsbc 2951 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 ℕ0cn0 9114 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: bezoutlemex 11934 |
Copyright terms: Public domain | W3C validator |