![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bezoutlemb | GIF version |
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.) |
Ref | Expression |
---|---|
bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
Ref | Expression |
---|---|
bezoutlemb | ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9240 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 1z 9255 | . . 3 ⊢ 1 ∈ ℤ | |
3 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
4 | 3 | nn0cnd 9207 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
5 | 4 | mul01d 8327 | . . . . 5 ⊢ (𝜃 → (𝐴 · 0) = 0) |
6 | 5 | oveq1d 5883 | . . . 4 ⊢ (𝜃 → ((𝐴 · 0) + (𝐵 · 1)) = (0 + (𝐵 · 1))) |
7 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
8 | 7 | nn0cnd 9207 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
9 | 1cnd 7951 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
10 | 8, 9 | mulcld 7955 | . . . . 5 ⊢ (𝜃 → (𝐵 · 1) ∈ ℂ) |
11 | 10 | addid2d 8084 | . . . 4 ⊢ (𝜃 → (0 + (𝐵 · 1)) = (𝐵 · 1)) |
12 | 8 | mulid1d 7952 | . . . 4 ⊢ (𝜃 → (𝐵 · 1) = 𝐵) |
13 | 6, 11, 12 | 3eqtrrd 2215 | . . 3 ⊢ (𝜃 → 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) |
14 | oveq2 5876 | . . . . . 6 ⊢ (𝑠 = 0 → (𝐴 · 𝑠) = (𝐴 · 0)) | |
15 | 14 | oveq1d 5883 | . . . . 5 ⊢ (𝑠 = 0 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 𝑡))) |
16 | 15 | eqeq2d 2189 | . . . 4 ⊢ (𝑠 = 0 → (𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)))) |
17 | oveq2 5876 | . . . . . 6 ⊢ (𝑡 = 1 → (𝐵 · 𝑡) = (𝐵 · 1)) | |
18 | 17 | oveq2d 5884 | . . . . 5 ⊢ (𝑡 = 1 → ((𝐴 · 0) + (𝐵 · 𝑡)) = ((𝐴 · 0) + (𝐵 · 1))) |
19 | 18 | eqeq2d 2189 | . . . 4 ⊢ (𝑡 = 1 → (𝐵 = ((𝐴 · 0) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 0) + (𝐵 · 1)))) |
20 | 16, 19 | rspc2ev 2856 | . . 3 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 = ((𝐴 · 0) + (𝐵 · 1))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
21 | 1, 2, 13, 20 | mp3an12i 1341 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
23 | eqeq1 2184 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
24 | 23 | 2rexbidv 2502 | . . . . 5 ⊢ (𝑟 = 𝐵 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
26 | 25 | sbcieg 2995 | . . 3 ⊢ (𝐵 ∈ ℕ0 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐵 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐵 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 [wsbc 2962 (class class class)co 5868 0cc0 7789 1c1 7790 + caddc 7792 · cmul 7794 ℕ0cn0 9152 ℤcz 9229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4118 ax-pow 4171 ax-pr 4205 ax-un 4429 ax-setind 4532 ax-cnex 7880 ax-resscn 7881 ax-1cn 7882 ax-1re 7883 ax-icn 7884 ax-addcl 7885 ax-addrcl 7886 ax-mulcl 7887 ax-addcom 7889 ax-mulcom 7890 ax-addass 7891 ax-mulass 7892 ax-distr 7893 ax-i2m1 7894 ax-0lt1 7895 ax-1rid 7896 ax-0id 7897 ax-rnegex 7898 ax-cnre 7900 ax-pre-ltirr 7901 ax-pre-ltwlin 7902 ax-pre-lttrn 7903 ax-pre-ltadd 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-br 4001 df-opab 4062 df-id 4289 df-xp 4628 df-rel 4629 df-cnv 4630 df-co 4631 df-dm 4632 df-iota 5173 df-fun 5213 df-fv 5219 df-riota 5824 df-ov 5871 df-oprab 5872 df-mpo 5873 df-pnf 7971 df-mnf 7972 df-xr 7973 df-ltxr 7974 df-le 7975 df-sub 8107 df-neg 8108 df-inn 8896 df-n0 9153 df-z 9230 |
This theorem is referenced by: bezoutlemex 11972 |
Copyright terms: Public domain | W3C validator |