ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logdivlti GIF version

Theorem logdivlti 15057
Description: The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1003 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simpl3 1004 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ 𝐴)
3 simpr 110 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4 ere 11816 . . . . . . . . . . 11 e ∈ ℝ
5 simpl1 1002 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
6 lelttr 8110 . . . . . . . . . . 11 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
74, 5, 1, 6mp3an2i 1353 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
82, 3, 7mp2and 433 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e < 𝐵)
9 epos 11927 . . . . . . . . . 10 0 < e
10 0re 8021 . . . . . . . . . . 11 0 ∈ ℝ
11 lttr 8095 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
1210, 4, 1, 11mp3an12i 1352 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
139, 12mpani 430 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e < 𝐵 → 0 < 𝐵))
148, 13mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐵)
151, 14elrpd 9762 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ+)
16 ltletr 8111 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
1710, 4, 5, 16mp3an12i 1352 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
189, 17mpani 430 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e ≤ 𝐴 → 0 < 𝐴))
192, 18mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐴)
205, 19elrpd 9762 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ+)
2115, 20rpdivcld 9783 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ+)
22 relogcl 15038 . . . . . 6 ((𝐵 / 𝐴) ∈ ℝ+ → (log‘(𝐵 / 𝐴)) ∈ ℝ)
2321, 22syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) ∈ ℝ)
241, 20rerpdivcld 9797 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ)
25 1re 8020 . . . . . 6 1 ∈ ℝ
26 resubcl 8285 . . . . . 6 (((𝐵 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
2724, 25, 26sylancl 413 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
28 relogcl 15038 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
2920, 28syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℝ)
3027, 29remulcld 8052 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) ∈ ℝ)
31 reeflog 15039 . . . . . . . . 9 ((𝐵 / 𝐴) ∈ ℝ+ → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
3221, 31syl 14 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
33 ax-1cn 7967 . . . . . . . . 9 1 ∈ ℂ
3424recnd 8050 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℂ)
35 pncan3 8229 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3633, 34, 35sylancr 414 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3732, 36eqtr4d 2229 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (1 + ((𝐵 / 𝐴) − 1)))
385recnd 8050 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
3938mulid2d 8040 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) = 𝐴)
4039, 3eqbrtrd 4052 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) < 𝐵)
41 1red 8036 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
42 ltmuldiv 8895 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4341, 1, 5, 19, 42syl112anc 1253 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4440, 43mpbid 147 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 < (𝐵 / 𝐴))
45 difrp 9761 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4625, 24, 45sylancr 414 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4744, 46mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ+)
48 efgt1p 11842 . . . . . . . 8 (((𝐵 / 𝐴) − 1) ∈ ℝ+ → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
4947, 48syl 14 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
5037, 49eqbrtrd 4052 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1)))
51 eflt 14951 . . . . . . 7 (((log‘(𝐵 / 𝐴)) ∈ ℝ ∧ ((𝐵 / 𝐴) − 1) ∈ ℝ) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5223, 27, 51syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5350, 52mpbird 167 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1))
5427recnd 8050 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℂ)
5554mulridd 8038 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) = ((𝐵 / 𝐴) − 1))
56 df-e 11795 . . . . . . . . 9 e = (exp‘1)
57 reeflog 15039 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
5820, 57syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘𝐴)) = 𝐴)
592, 58breqtrrd 4058 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ (exp‘(log‘𝐴)))
6056, 59eqbrtrrid 4066 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘1) ≤ (exp‘(log‘𝐴)))
61 efle 14952 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6225, 29, 61sylancr 414 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6360, 62mpbird 167 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ≤ (log‘𝐴))
64 posdif 8476 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6525, 24, 64sylancr 414 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6644, 65mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < ((𝐵 / 𝐴) − 1))
67 lemul2 8878 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ ∧ (((𝐵 / 𝐴) − 1) ∈ ℝ ∧ 0 < ((𝐵 / 𝐴) − 1))) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6841, 29, 27, 66, 67syl112anc 1253 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6963, 68mpbid 147 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7055, 69eqbrtrrd 4054 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7123, 27, 30, 53, 70ltletrd 8444 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
72 relogdiv 15046 . . . . 5 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ+) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
7315, 20, 72syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
74 1cnd 8037 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
7529recnd 8050 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℂ)
7634, 74, 75subdird 8436 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))))
771recnd 8050 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
7820rpap0d 9771 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 # 0)
7977, 38, 75, 78div32apd 8835 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) · (log‘𝐴)) = (𝐵 · ((log‘𝐴) / 𝐴)))
8075mulid2d 8040 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · (log‘𝐴)) = (log‘𝐴))
8179, 80oveq12d 5937 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8276, 81eqtrd 2226 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8371, 73, 823brtr3d 4061 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
84 relogcl 15038 . . . . 5 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
8515, 84syl 14 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) ∈ ℝ)
8629, 20rerpdivcld 9797 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐴) / 𝐴) ∈ ℝ)
871, 86remulcld 8052 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
8885, 87, 29ltsub1d 8575 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)) ↔ ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴))))
8983, 88mpbird 167 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)))
9085, 86, 15ltdivmuld 9817 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴))))
9189, 90mpbird 167 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192   / cdiv 8693  +crp 9722  expce 11788  eceu 11789  logclog 15032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-pre-suploc 7995  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-pm 6707  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-ioo 9961  df-ico 9963  df-icc 9964  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-e 11795  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-cncf 14750  df-limced 14835  df-dvap 14836  df-relog 15034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator