ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logdivlti GIF version

Theorem logdivlti 13452
Description: The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 991 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simpl3 992 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ 𝐴)
3 simpr 109 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4 ere 11611 . . . . . . . . . . 11 e ∈ ℝ
5 simpl1 990 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
6 lelttr 7987 . . . . . . . . . . 11 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
74, 5, 1, 6mp3an2i 1332 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
82, 3, 7mp2and 430 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e < 𝐵)
9 epos 11721 . . . . . . . . . 10 0 < e
10 0re 7899 . . . . . . . . . . 11 0 ∈ ℝ
11 lttr 7972 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
1210, 4, 1, 11mp3an12i 1331 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
139, 12mpani 427 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e < 𝐵 → 0 < 𝐵))
148, 13mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐵)
151, 14elrpd 9629 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ+)
16 ltletr 7988 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
1710, 4, 5, 16mp3an12i 1331 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
189, 17mpani 427 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e ≤ 𝐴 → 0 < 𝐴))
192, 18mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐴)
205, 19elrpd 9629 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ+)
2115, 20rpdivcld 9650 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ+)
22 relogcl 13433 . . . . . 6 ((𝐵 / 𝐴) ∈ ℝ+ → (log‘(𝐵 / 𝐴)) ∈ ℝ)
2321, 22syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) ∈ ℝ)
241, 20rerpdivcld 9664 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ)
25 1re 7898 . . . . . 6 1 ∈ ℝ
26 resubcl 8162 . . . . . 6 (((𝐵 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
2724, 25, 26sylancl 410 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
28 relogcl 13433 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
2920, 28syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℝ)
3027, 29remulcld 7929 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) ∈ ℝ)
31 reeflog 13434 . . . . . . . . 9 ((𝐵 / 𝐴) ∈ ℝ+ → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
3221, 31syl 14 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
33 ax-1cn 7846 . . . . . . . . 9 1 ∈ ℂ
3424recnd 7927 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℂ)
35 pncan3 8106 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3633, 34, 35sylancr 411 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3732, 36eqtr4d 2201 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (1 + ((𝐵 / 𝐴) − 1)))
385recnd 7927 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
3938mulid2d 7917 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) = 𝐴)
4039, 3eqbrtrd 4004 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) < 𝐵)
41 1red 7914 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
42 ltmuldiv 8769 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4341, 1, 5, 19, 42syl112anc 1232 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4440, 43mpbid 146 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 < (𝐵 / 𝐴))
45 difrp 9628 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4625, 24, 45sylancr 411 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4744, 46mpbid 146 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ+)
48 efgt1p 11637 . . . . . . . 8 (((𝐵 / 𝐴) − 1) ∈ ℝ+ → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
4947, 48syl 14 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
5037, 49eqbrtrd 4004 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1)))
51 eflt 13346 . . . . . . 7 (((log‘(𝐵 / 𝐴)) ∈ ℝ ∧ ((𝐵 / 𝐴) − 1) ∈ ℝ) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5223, 27, 51syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5350, 52mpbird 166 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1))
5427recnd 7927 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℂ)
5554mulid1d 7916 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) = ((𝐵 / 𝐴) − 1))
56 df-e 11590 . . . . . . . . 9 e = (exp‘1)
57 reeflog 13434 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
5820, 57syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘𝐴)) = 𝐴)
592, 58breqtrrd 4010 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ (exp‘(log‘𝐴)))
6056, 59eqbrtrrid 4018 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘1) ≤ (exp‘(log‘𝐴)))
61 efle 13347 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6225, 29, 61sylancr 411 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6360, 62mpbird 166 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ≤ (log‘𝐴))
64 posdif 8353 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6525, 24, 64sylancr 411 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6644, 65mpbid 146 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < ((𝐵 / 𝐴) − 1))
67 lemul2 8752 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ ∧ (((𝐵 / 𝐴) − 1) ∈ ℝ ∧ 0 < ((𝐵 / 𝐴) − 1))) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6841, 29, 27, 66, 67syl112anc 1232 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
6963, 68mpbid 146 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7055, 69eqbrtrrd 4006 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7123, 27, 30, 53, 70ltletrd 8321 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
72 relogdiv 13441 . . . . 5 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ+) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
7315, 20, 72syl2anc 409 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
74 1cnd 7915 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
7529recnd 7927 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℂ)
7634, 74, 75subdird 8313 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))))
771recnd 7927 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
7820rpap0d 9638 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 # 0)
7977, 38, 75, 78div32apd 8710 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) · (log‘𝐴)) = (𝐵 · ((log‘𝐴) / 𝐴)))
8075mulid2d 7917 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · (log‘𝐴)) = (log‘𝐴))
8179, 80oveq12d 5860 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8276, 81eqtrd 2198 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8371, 73, 823brtr3d 4013 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
84 relogcl 13433 . . . . 5 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
8515, 84syl 14 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) ∈ ℝ)
8629, 20rerpdivcld 9664 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐴) / 𝐴) ∈ ℝ)
871, 86remulcld 7929 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
8885, 87, 29ltsub1d 8452 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)) ↔ ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴))))
8983, 88mpbird 166 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)))
9085, 86, 15ltdivmuld 9684 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴))))
9189, 90mpbird 166 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  +crp 9589  expce 11583  eceu 11584  logclog 13427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-e 11590  df-rest 12558  df-topgen 12577  df-psmet 12637  df-xmet 12638  df-met 12639  df-bl 12640  df-mopn 12641  df-top 12646  df-topon 12659  df-bases 12691  df-ntr 12746  df-cn 12838  df-cnp 12839  df-tx 12903  df-cncf 13208  df-limced 13275  df-dvap 13276  df-relog 13429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator