ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos02pilt1 GIF version

Theorem cos02pilt1 12932
Description: Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cos02pilt1 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)

Proof of Theorem cos02pilt1
StepHypRef Expression
1 elioore 9695 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ)
21adantr 274 . . . . . 6 ((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) → 𝐴 ∈ ℝ)
32adantr 274 . . . . 5 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ π < 𝐴) → 𝐴 ∈ ℝ)
4 pire 12867 . . . . . . 7 π ∈ ℝ
54a1i 9 . . . . . 6 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ π < 𝐴) → π ∈ ℝ)
6 simpr 109 . . . . . 6 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ π < 𝐴) → π < 𝐴)
75, 3, 6ltled 7881 . . . . 5 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ π < 𝐴) → π ≤ 𝐴)
8 0xr 7812 . . . . . . . 8 0 ∈ ℝ*
9 2re 8790 . . . . . . . . . 10 2 ∈ ℝ
109, 4remulcli 7780 . . . . . . . . 9 (2 · π) ∈ ℝ
1110rexri 7823 . . . . . . . 8 (2 · π) ∈ ℝ*
12 elioo2 9704 . . . . . . . 8 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (0(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (2 · π))))
138, 11, 12mp2an 422 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (2 · π)))
1413simp3bi 998 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π))
1514ad2antrr 479 . . . . 5 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ π < 𝐴) → 𝐴 < (2 · π))
16 elico2 9720 . . . . . 6 ((π ∈ ℝ ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π))))
174, 11, 16mp2an 422 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π)))
183, 7, 15, 17syl3anbrc 1165 . . . 4 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ π < 𝐴) → 𝐴 ∈ (π[,)(2 · π)))
19 cosq34lt1 12931 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
2018, 19syl 14 . . 3 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ π < 𝐴) → (cos‘𝐴) < 1)
212adantr 274 . . . . 5 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ 𝐴 < (3 · (π / 2))) → 𝐴 ∈ ℝ)
22 simplr 519 . . . . 5 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ 𝐴 < (3 · (π / 2))) → (π / 2) < 𝐴)
23 simpr 109 . . . . 5 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ 𝐴 < (3 · (π / 2))) → 𝐴 < (3 · (π / 2)))
24 halfpire 12873 . . . . . . 7 (π / 2) ∈ ℝ
2524rexri 7823 . . . . . 6 (π / 2) ∈ ℝ*
26 3re 8794 . . . . . . . 8 3 ∈ ℝ
2726, 24remulcli 7780 . . . . . . 7 (3 · (π / 2)) ∈ ℝ
2827rexri 7823 . . . . . 6 (3 · (π / 2)) ∈ ℝ*
29 elioo2 9704 . . . . . 6 (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
3025, 28, 29mp2an 422 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2))))
3121, 22, 23, 30syl3anbrc 1165 . . . 4 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ 𝐴 < (3 · (π / 2))) → 𝐴 ∈ ((π / 2)(,)(3 · (π / 2))))
32 elioore 9695 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ)
3332recoscld 11431 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) ∈ ℝ)
34 0red 7767 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 0 ∈ ℝ)
35 1red 7781 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 1 ∈ ℝ)
36 cosq23lt0 12914 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
37 0lt1 7889 . . . . . 6 0 < 1
3837a1i 9 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 0 < 1)
3933, 34, 35, 36, 38lttrd 7888 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 1)
4031, 39syl 14 . . 3 (((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) ∧ 𝐴 < (3 · (π / 2))) → (cos‘𝐴) < 1)
41 2lt3 8890 . . . . . 6 2 < 3
42 2pos 8811 . . . . . . . 8 0 < 2
439, 42pm3.2i 270 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
44 3pos 8814 . . . . . . . 8 0 < 3
4526, 44pm3.2i 270 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
46 pipos 12869 . . . . . . . 8 0 < π
474, 46pm3.2i 270 . . . . . . 7 (π ∈ ℝ ∧ 0 < π)
48 ltdiv2 8645 . . . . . . 7 (((2 ∈ ℝ ∧ 0 < 2) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 3 ↔ (π / 3) < (π / 2)))
4943, 45, 47, 48mp3an 1315 . . . . . 6 (2 < 3 ↔ (π / 3) < (π / 2))
5041, 49mpbi 144 . . . . 5 (π / 3) < (π / 2)
51 ltdivmul 8634 . . . . . 6 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((π / 3) < (π / 2) ↔ π < (3 · (π / 2))))
524, 24, 45, 51mp3an 1315 . . . . 5 ((π / 3) < (π / 2) ↔ π < (3 · (π / 2)))
5350, 52mpbi 144 . . . 4 π < (3 · (π / 2))
54 axltwlin 7832 . . . . 5 ((π ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (π < (3 · (π / 2)) → (π < 𝐴𝐴 < (3 · (π / 2)))))
554, 27, 2, 54mp3an12i 1319 . . . 4 ((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) → (π < (3 · (π / 2)) → (π < 𝐴𝐴 < (3 · (π / 2)))))
5653, 55mpi 15 . . 3 ((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) → (π < 𝐴𝐴 < (3 · (π / 2))))
5720, 40, 56mpjaodan 787 . 2 ((𝐴 ∈ (0(,)(2 · π)) ∧ (π / 2) < 𝐴) → (cos‘𝐴) < 1)
584rexri 7823 . . . . . 6 π ∈ ℝ*
59 0re 7766 . . . . . . 7 0 ∈ ℝ
6059, 4, 46ltleii 7866 . . . . . 6 0 ≤ π
61 lbicc2 9767 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
628, 58, 60, 61mp3an 1315 . . . . 5 0 ∈ (0[,]π)
6362a1i 9 . . . 4 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 0 ∈ (0[,]π))
641adantr 274 . . . . 5 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 𝐴 ∈ ℝ)
65 0red 7767 . . . . . 6 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 0 ∈ ℝ)
6613simp2bi 997 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴)
6766adantr 274 . . . . . 6 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 0 < 𝐴)
6865, 64, 67ltled 7881 . . . . 5 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 0 ≤ 𝐴)
694a1i 9 . . . . . 6 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → π ∈ ℝ)
70 simpr 109 . . . . . 6 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 𝐴 < π)
7164, 69, 70ltled 7881 . . . . 5 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 𝐴 ≤ π)
7259, 4elicc2i 9722 . . . . 5 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
7364, 68, 71, 72syl3anbrc 1165 . . . 4 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → 𝐴 ∈ (0[,]π))
7463, 73, 67cosordlem 12930 . . 3 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → (cos‘𝐴) < (cos‘0))
75 cos0 11437 . . 3 (cos‘0) = 1
7674, 75breqtrdi 3969 . 2 ((𝐴 ∈ (0(,)(2 · π)) ∧ 𝐴 < π) → (cos‘𝐴) < 1)
77 pirp 12870 . . . 4 π ∈ ℝ+
78 rphalflt 9471 . . . 4 (π ∈ ℝ+ → (π / 2) < π)
7977, 78ax-mp 5 . . 3 (π / 2) < π
80 axltwlin 7832 . . . 4 (((π / 2) ∈ ℝ ∧ π ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) < π → ((π / 2) < 𝐴𝐴 < π)))
8124, 4, 1, 80mp3an12i 1319 . . 3 (𝐴 ∈ (0(,)(2 · π)) → ((π / 2) < π → ((π / 2) < 𝐴𝐴 < π)))
8279, 81mpi 15 . 2 (𝐴 ∈ (0(,)(2 · π)) → ((π / 2) < 𝐴𝐴 < π))
8357, 76, 82mpjaodan 787 1 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   · cmul 7625  *cxr 7799   < clt 7800  cle 7801   / cdiv 8432  2c2 8771  3c3 8772  +crp 9441  (,)cioo 9671  [,)cico 9673  [,]cicc 9674  cosccos 11351  πcpi 11353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-pre-suploc 7741  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ioo 9675  df-ioc 9676  df-ico 9677  df-icc 9678  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-shft 10587  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357  df-pi 11359  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  taupi  13239
  Copyright terms: Public domain W3C validator