ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi GIF version

Theorem coseq0negpitopi 12930
Description: Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 519 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (cos‘𝐴) = 0)
2 pire 12880 . . . . . . . . . . . . 13 π ∈ ℝ
32renegcli 8031 . . . . . . . . . . . 12 -π ∈ ℝ
43rexri 7830 . . . . . . . . . . 11 -π ∈ ℝ*
5 elioc2 9726 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π)))
64, 2, 5mp2an 422 . . . . . . . . . 10 (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
76simp1bi 996 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ∈ ℝ)
87adantr 274 . . . . . . . 8 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
98adantr 274 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ ℝ)
10 halfpire 12886 . . . . . . . . . 10 (π / 2) ∈ ℝ
1110renegcli 8031 . . . . . . . . 9 -(π / 2) ∈ ℝ
1211a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) ∈ ℝ)
13 4re 8804 . . . . . . . . . . 11 4 ∈ ℝ
14 4ap0 8826 . . . . . . . . . . 11 4 # 0
152, 13, 14redivclapi 8546 . . . . . . . . . 10 (π / 4) ∈ ℝ
1615renegcli 8031 . . . . . . . . 9 -(π / 4) ∈ ℝ
1716a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) ∈ ℝ)
18 2lt4 8900 . . . . . . . . . . 11 2 < 4
19 2re 8797 . . . . . . . . . . . . 13 2 ∈ ℝ
20 2pos 8818 . . . . . . . . . . . . 13 0 < 2
2119, 20pm3.2i 270 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
22 4pos 8824 . . . . . . . . . . . . 13 0 < 4
2313, 22pm3.2i 270 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 0 < 4)
24 pipos 12882 . . . . . . . . . . . . 13 0 < π
252, 24pm3.2i 270 . . . . . . . . . . . 12 (π ∈ ℝ ∧ 0 < π)
26 ltdiv2 8652 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (4 ∈ ℝ ∧ 0 < 4) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 4 ↔ (π / 4) < (π / 2)))
2721, 23, 25, 26mp3an 1315 . . . . . . . . . . 11 (2 < 4 ↔ (π / 4) < (π / 2))
2818, 27mpbi 144 . . . . . . . . . 10 (π / 4) < (π / 2)
2915, 10ltnegi 8262 . . . . . . . . . 10 ((π / 4) < (π / 2) ↔ -(π / 2) < -(π / 4))
3028, 29mpbi 144 . . . . . . . . 9 -(π / 2) < -(π / 4)
3130a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < -(π / 4))
32 simpr 109 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) < 𝐴)
3312, 17, 9, 31, 32lttrd 7895 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < 𝐴)
342a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π ∈ ℝ)
35 3re 8801 . . . . . . . . . 10 3 ∈ ℝ
3635, 10remulcli 7787 . . . . . . . . 9 (3 · (π / 2)) ∈ ℝ
3736a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (3 · (π / 2)) ∈ ℝ)
386simp3bi 998 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ≤ π)
3938ad2antrr 479 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ≤ π)
40 2lt3 8897 . . . . . . . . . . 11 2 < 3
41 3pos 8821 . . . . . . . . . . . . 13 0 < 3
4235, 41pm3.2i 270 . . . . . . . . . . . 12 (3 ∈ ℝ ∧ 0 < 3)
43 ltdiv2 8652 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 3 ↔ (π / 3) < (π / 2)))
4421, 42, 25, 43mp3an 1315 . . . . . . . . . . 11 (2 < 3 ↔ (π / 3) < (π / 2))
4540, 44mpbi 144 . . . . . . . . . 10 (π / 3) < (π / 2)
46 ltdivmul 8641 . . . . . . . . . . 11 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((π / 3) < (π / 2) ↔ π < (3 · (π / 2))))
472, 10, 42, 46mp3an 1315 . . . . . . . . . 10 ((π / 3) < (π / 2) ↔ π < (3 · (π / 2)))
4845, 47mpbi 144 . . . . . . . . 9 π < (3 · (π / 2))
4948a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π < (3 · (π / 2)))
509, 34, 37, 39, 49lelttrd 7894 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 < (3 · (π / 2)))
5111rexri 7830 . . . . . . . 8 -(π / 2) ∈ ℝ*
5236rexri 7830 . . . . . . . 8 (3 · (π / 2)) ∈ ℝ*
53 elioo2 9711 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
5451, 52, 53mp2an 422 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
559, 33, 50, 54syl3anbrc 1165 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))))
56 coseq0q4123 12928 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5755, 56syl 14 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
581, 57mpbid 146 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 = (π / 2))
59 prid1g 3627 . . . . 5 ((π / 2) ∈ ℝ → (π / 2) ∈ {(π / 2), -(π / 2)})
60 eleq1a 2211 . . . . 5 ((π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
6110, 59, 60mp2b 8 . . . 4 (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
6258, 61syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ {(π / 2), -(π / 2)})
638recnd 7801 . . . . . . 7 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℂ)
6463adantr 274 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
65 cosneg 11441 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
6664, 65syl 14 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = (cos‘𝐴))
67 simplr 519 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘𝐴) = 0)
6866, 67eqtrd 2172 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = 0)
698renegcld 8149 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ∈ ℝ)
7069adantr 274 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
71 0re 7773 . . . . . . . . . . 11 0 ∈ ℝ
7271a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ∈ ℝ)
73 simpr 109 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 < 0)
748adantr 274 . . . . . . . . . . . 12 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7574lt0neg1d 8284 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7673, 75mpbid 146 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 < -𝐴)
7772, 70, 76ltled 7888 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
782a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → π ∈ ℝ)
792a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
806simp2bi 997 . . . . . . . . . . . . 13 (𝐴 ∈ (-π(,]π) → -π < 𝐴)
8180adantr 274 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -π < 𝐴)
8279, 8, 81ltnegcon1d 8294 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 < π)
8382adantr 274 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 < π)
8470, 78, 83ltled 7888 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ≤ π)
8571, 2elicc2i 9729 . . . . . . . . 9 (-𝐴 ∈ (0[,]π) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴 ∧ -𝐴 ≤ π))
8670, 77, 84, 85syl3anbrc 1165 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ (0[,]π))
87 coseq00topi 12929 . . . . . . . 8 (-𝐴 ∈ (0[,]π) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8886, 87syl 14 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8968, 88mpbid 146 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 = (π / 2))
9064, 89negcon1ad 8075 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -(π / 2) = 𝐴)
9190eqcomd 2145 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 = -(π / 2))
92 prid2g 3628 . . . . 5 (-(π / 2) ∈ ℝ → -(π / 2) ∈ {(π / 2), -(π / 2)})
93 eleq1a 2211 . . . . 5 (-(π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
9411, 92, 93mp2b 8 . . . 4 (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
9591, 94syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
96 pirp 12883 . . . . . . 7 π ∈ ℝ+
9713, 22elrpii 9451 . . . . . . 7 4 ∈ ℝ+
98 rpdivcl 9474 . . . . . . 7 ((π ∈ ℝ+ ∧ 4 ∈ ℝ+) → (π / 4) ∈ ℝ+)
9996, 97, 98mp2an 422 . . . . . 6 (π / 4) ∈ ℝ+
100 rpgt0 9460 . . . . . 6 ((π / 4) ∈ ℝ+ → 0 < (π / 4))
10199, 100ax-mp 5 . . . . 5 0 < (π / 4)
102 lt0neg2 8238 . . . . . 6 ((π / 4) ∈ ℝ → (0 < (π / 4) ↔ -(π / 4) < 0))
10315, 102ax-mp 5 . . . . 5 (0 < (π / 4) ↔ -(π / 4) < 0)
104101, 103mpbi 144 . . . 4 -(π / 4) < 0
105 axltwlin 7839 . . . . 5 ((-(π / 4) ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
10616, 71, 8, 105mp3an12i 1319 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
107104, 106mpi 15 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 𝐴𝐴 < 0))
10862, 95, 107mpjaodan 787 . 2 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
109 elpri 3550 . . . 4 (𝐴 ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)))
110 fveq2 5421 . . . . . 6 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
111 coshalfpi 12891 . . . . . 6 (cos‘(π / 2)) = 0
112110, 111syl6eq 2188 . . . . 5 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
113 fveq2 5421 . . . . . 6 (𝐴 = -(π / 2) → (cos‘𝐴) = (cos‘-(π / 2)))
114 cosneghalfpi 12892 . . . . . 6 (cos‘-(π / 2)) = 0
115113, 114syl6eq 2188 . . . . 5 (𝐴 = -(π / 2) → (cos‘𝐴) = 0)
116112, 115jaoi 705 . . . 4 ((𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)) → (cos‘𝐴) = 0)
117109, 116syl 14 . . 3 (𝐴 ∈ {(π / 2), -(π / 2)} → (cos‘𝐴) = 0)
118117adantl 275 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐴 ∈ {(π / 2), -(π / 2)}) → (cos‘𝐴) = 0)
119108, 118impbida 585 1 (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  {cpr 3528   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7625  cr 7626  0cc0 7627   · cmul 7632  *cxr 7806   < clt 7807  cle 7808  -cneg 7941   / cdiv 8439  2c2 8778  3c3 8779  4c4 8780  +crp 9448  (,)cioo 9678  (,]cioc 9679  [,]cicc 9681  cosccos 11358  πcpi 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-rest 12132  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-met 12168  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-ntr 12275  df-cn 12367  df-cnp 12368  df-tx 12432  df-cncf 12737  df-limced 12804  df-dvap 12805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator