ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi GIF version

Theorem coseq0negpitopi 12965
Description: Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 520 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (cos‘𝐴) = 0)
2 pire 12915 . . . . . . . . . . . . 13 π ∈ ℝ
32renegcli 8048 . . . . . . . . . . . 12 -π ∈ ℝ
43rexri 7847 . . . . . . . . . . 11 -π ∈ ℝ*
5 elioc2 9749 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π)))
64, 2, 5mp2an 423 . . . . . . . . . 10 (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
76simp1bi 997 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ∈ ℝ)
87adantr 274 . . . . . . . 8 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
98adantr 274 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ ℝ)
10 halfpire 12921 . . . . . . . . . 10 (π / 2) ∈ ℝ
1110renegcli 8048 . . . . . . . . 9 -(π / 2) ∈ ℝ
1211a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) ∈ ℝ)
13 4re 8821 . . . . . . . . . . 11 4 ∈ ℝ
14 4ap0 8843 . . . . . . . . . . 11 4 # 0
152, 13, 14redivclapi 8563 . . . . . . . . . 10 (π / 4) ∈ ℝ
1615renegcli 8048 . . . . . . . . 9 -(π / 4) ∈ ℝ
1716a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) ∈ ℝ)
18 2lt4 8917 . . . . . . . . . . 11 2 < 4
19 2re 8814 . . . . . . . . . . . . 13 2 ∈ ℝ
20 2pos 8835 . . . . . . . . . . . . 13 0 < 2
2119, 20pm3.2i 270 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
22 4pos 8841 . . . . . . . . . . . . 13 0 < 4
2313, 22pm3.2i 270 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 0 < 4)
24 pipos 12917 . . . . . . . . . . . . 13 0 < π
252, 24pm3.2i 270 . . . . . . . . . . . 12 (π ∈ ℝ ∧ 0 < π)
26 ltdiv2 8669 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (4 ∈ ℝ ∧ 0 < 4) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 4 ↔ (π / 4) < (π / 2)))
2721, 23, 25, 26mp3an 1316 . . . . . . . . . . 11 (2 < 4 ↔ (π / 4) < (π / 2))
2818, 27mpbi 144 . . . . . . . . . 10 (π / 4) < (π / 2)
2915, 10ltnegi 8279 . . . . . . . . . 10 ((π / 4) < (π / 2) ↔ -(π / 2) < -(π / 4))
3028, 29mpbi 144 . . . . . . . . 9 -(π / 2) < -(π / 4)
3130a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < -(π / 4))
32 simpr 109 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) < 𝐴)
3312, 17, 9, 31, 32lttrd 7912 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < 𝐴)
342a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π ∈ ℝ)
35 3re 8818 . . . . . . . . . 10 3 ∈ ℝ
3635, 10remulcli 7804 . . . . . . . . 9 (3 · (π / 2)) ∈ ℝ
3736a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (3 · (π / 2)) ∈ ℝ)
386simp3bi 999 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ≤ π)
3938ad2antrr 480 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ≤ π)
40 2lt3 8914 . . . . . . . . . . 11 2 < 3
41 3pos 8838 . . . . . . . . . . . . 13 0 < 3
4235, 41pm3.2i 270 . . . . . . . . . . . 12 (3 ∈ ℝ ∧ 0 < 3)
43 ltdiv2 8669 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 3 ↔ (π / 3) < (π / 2)))
4421, 42, 25, 43mp3an 1316 . . . . . . . . . . 11 (2 < 3 ↔ (π / 3) < (π / 2))
4540, 44mpbi 144 . . . . . . . . . 10 (π / 3) < (π / 2)
46 ltdivmul 8658 . . . . . . . . . . 11 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((π / 3) < (π / 2) ↔ π < (3 · (π / 2))))
472, 10, 42, 46mp3an 1316 . . . . . . . . . 10 ((π / 3) < (π / 2) ↔ π < (3 · (π / 2)))
4845, 47mpbi 144 . . . . . . . . 9 π < (3 · (π / 2))
4948a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π < (3 · (π / 2)))
509, 34, 37, 39, 49lelttrd 7911 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 < (3 · (π / 2)))
5111rexri 7847 . . . . . . . 8 -(π / 2) ∈ ℝ*
5236rexri 7847 . . . . . . . 8 (3 · (π / 2)) ∈ ℝ*
53 elioo2 9734 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
5451, 52, 53mp2an 423 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
559, 33, 50, 54syl3anbrc 1166 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))))
56 coseq0q4123 12963 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5755, 56syl 14 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
581, 57mpbid 146 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 = (π / 2))
59 prid1g 3635 . . . . 5 ((π / 2) ∈ ℝ → (π / 2) ∈ {(π / 2), -(π / 2)})
60 eleq1a 2212 . . . . 5 ((π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
6110, 59, 60mp2b 8 . . . 4 (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
6258, 61syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ {(π / 2), -(π / 2)})
638recnd 7818 . . . . . . 7 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℂ)
6463adantr 274 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
65 cosneg 11470 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
6664, 65syl 14 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = (cos‘𝐴))
67 simplr 520 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘𝐴) = 0)
6866, 67eqtrd 2173 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = 0)
698renegcld 8166 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ∈ ℝ)
7069adantr 274 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
71 0re 7790 . . . . . . . . . . 11 0 ∈ ℝ
7271a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ∈ ℝ)
73 simpr 109 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 < 0)
748adantr 274 . . . . . . . . . . . 12 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7574lt0neg1d 8301 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7673, 75mpbid 146 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 < -𝐴)
7772, 70, 76ltled 7905 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
782a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → π ∈ ℝ)
792a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
806simp2bi 998 . . . . . . . . . . . . 13 (𝐴 ∈ (-π(,]π) → -π < 𝐴)
8180adantr 274 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -π < 𝐴)
8279, 8, 81ltnegcon1d 8311 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 < π)
8382adantr 274 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 < π)
8470, 78, 83ltled 7905 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ≤ π)
8571, 2elicc2i 9752 . . . . . . . . 9 (-𝐴 ∈ (0[,]π) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴 ∧ -𝐴 ≤ π))
8670, 77, 84, 85syl3anbrc 1166 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ (0[,]π))
87 coseq00topi 12964 . . . . . . . 8 (-𝐴 ∈ (0[,]π) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8886, 87syl 14 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8968, 88mpbid 146 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 = (π / 2))
9064, 89negcon1ad 8092 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -(π / 2) = 𝐴)
9190eqcomd 2146 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 = -(π / 2))
92 prid2g 3636 . . . . 5 (-(π / 2) ∈ ℝ → -(π / 2) ∈ {(π / 2), -(π / 2)})
93 eleq1a 2212 . . . . 5 (-(π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
9411, 92, 93mp2b 8 . . . 4 (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
9591, 94syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
96 pirp 12918 . . . . . . 7 π ∈ ℝ+
9713, 22elrpii 9473 . . . . . . 7 4 ∈ ℝ+
98 rpdivcl 9496 . . . . . . 7 ((π ∈ ℝ+ ∧ 4 ∈ ℝ+) → (π / 4) ∈ ℝ+)
9996, 97, 98mp2an 423 . . . . . 6 (π / 4) ∈ ℝ+
100 rpgt0 9482 . . . . . 6 ((π / 4) ∈ ℝ+ → 0 < (π / 4))
10199, 100ax-mp 5 . . . . 5 0 < (π / 4)
102 lt0neg2 8255 . . . . . 6 ((π / 4) ∈ ℝ → (0 < (π / 4) ↔ -(π / 4) < 0))
10315, 102ax-mp 5 . . . . 5 (0 < (π / 4) ↔ -(π / 4) < 0)
104101, 103mpbi 144 . . . 4 -(π / 4) < 0
105 axltwlin 7856 . . . . 5 ((-(π / 4) ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
10616, 71, 8, 105mp3an12i 1320 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
107104, 106mpi 15 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 𝐴𝐴 < 0))
10862, 95, 107mpjaodan 788 . 2 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
109 elpri 3555 . . . 4 (𝐴 ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)))
110 fveq2 5429 . . . . . 6 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
111 coshalfpi 12926 . . . . . 6 (cos‘(π / 2)) = 0
112110, 111eqtrdi 2189 . . . . 5 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
113 fveq2 5429 . . . . . 6 (𝐴 = -(π / 2) → (cos‘𝐴) = (cos‘-(π / 2)))
114 cosneghalfpi 12927 . . . . . 6 (cos‘-(π / 2)) = 0
115113, 114eqtrdi 2189 . . . . 5 (𝐴 = -(π / 2) → (cos‘𝐴) = 0)
116112, 115jaoi 706 . . . 4 ((𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)) → (cos‘𝐴) = 0)
117109, 116syl 14 . . 3 (𝐴 ∈ {(π / 2), -(π / 2)} → (cos‘𝐴) = 0)
118117adantl 275 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐴 ∈ {(π / 2), -(π / 2)}) → (cos‘𝐴) = 0)
119108, 118impbida 586 1 (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wcel 1481  {cpr 3533   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644   · cmul 7649  *cxr 7823   < clt 7824  cle 7825  -cneg 7958   / cdiv 8456  2c2 8795  3c3 8796  4c4 8797  +crp 9470  (,)cioo 9701  (,]cioc 9702  [,]cicc 9704  cosccos 11388  πcpi 11390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394  df-pi 11396  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator