ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi GIF version

Theorem coseq0negpitopi 13397
Description: Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 520 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (cos‘𝐴) = 0)
2 pire 13347 . . . . . . . . . . . . 13 π ∈ ℝ
32renegcli 8160 . . . . . . . . . . . 12 -π ∈ ℝ
43rexri 7956 . . . . . . . . . . 11 -π ∈ ℝ*
5 elioc2 9872 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π)))
64, 2, 5mp2an 423 . . . . . . . . . 10 (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
76simp1bi 1002 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ∈ ℝ)
87adantr 274 . . . . . . . 8 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
98adantr 274 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ ℝ)
10 halfpire 13353 . . . . . . . . . 10 (π / 2) ∈ ℝ
1110renegcli 8160 . . . . . . . . 9 -(π / 2) ∈ ℝ
1211a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) ∈ ℝ)
13 4re 8934 . . . . . . . . . . 11 4 ∈ ℝ
14 4ap0 8956 . . . . . . . . . . 11 4 # 0
152, 13, 14redivclapi 8675 . . . . . . . . . 10 (π / 4) ∈ ℝ
1615renegcli 8160 . . . . . . . . 9 -(π / 4) ∈ ℝ
1716a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) ∈ ℝ)
18 2lt4 9030 . . . . . . . . . . 11 2 < 4
19 2re 8927 . . . . . . . . . . . . 13 2 ∈ ℝ
20 2pos 8948 . . . . . . . . . . . . 13 0 < 2
2119, 20pm3.2i 270 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
22 4pos 8954 . . . . . . . . . . . . 13 0 < 4
2313, 22pm3.2i 270 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 0 < 4)
24 pipos 13349 . . . . . . . . . . . . 13 0 < π
252, 24pm3.2i 270 . . . . . . . . . . . 12 (π ∈ ℝ ∧ 0 < π)
26 ltdiv2 8782 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (4 ∈ ℝ ∧ 0 < 4) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 4 ↔ (π / 4) < (π / 2)))
2721, 23, 25, 26mp3an 1327 . . . . . . . . . . 11 (2 < 4 ↔ (π / 4) < (π / 2))
2818, 27mpbi 144 . . . . . . . . . 10 (π / 4) < (π / 2)
2915, 10ltnegi 8391 . . . . . . . . . 10 ((π / 4) < (π / 2) ↔ -(π / 2) < -(π / 4))
3028, 29mpbi 144 . . . . . . . . 9 -(π / 2) < -(π / 4)
3130a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < -(π / 4))
32 simpr 109 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) < 𝐴)
3312, 17, 9, 31, 32lttrd 8024 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < 𝐴)
342a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π ∈ ℝ)
35 3re 8931 . . . . . . . . . 10 3 ∈ ℝ
3635, 10remulcli 7913 . . . . . . . . 9 (3 · (π / 2)) ∈ ℝ
3736a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (3 · (π / 2)) ∈ ℝ)
386simp3bi 1004 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ≤ π)
3938ad2antrr 480 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ≤ π)
40 2lt3 9027 . . . . . . . . . . 11 2 < 3
41 3pos 8951 . . . . . . . . . . . . 13 0 < 3
4235, 41pm3.2i 270 . . . . . . . . . . . 12 (3 ∈ ℝ ∧ 0 < 3)
43 ltdiv2 8782 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 3 ↔ (π / 3) < (π / 2)))
4421, 42, 25, 43mp3an 1327 . . . . . . . . . . 11 (2 < 3 ↔ (π / 3) < (π / 2))
4540, 44mpbi 144 . . . . . . . . . 10 (π / 3) < (π / 2)
46 ltdivmul 8771 . . . . . . . . . . 11 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((π / 3) < (π / 2) ↔ π < (3 · (π / 2))))
472, 10, 42, 46mp3an 1327 . . . . . . . . . 10 ((π / 3) < (π / 2) ↔ π < (3 · (π / 2)))
4845, 47mpbi 144 . . . . . . . . 9 π < (3 · (π / 2))
4948a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π < (3 · (π / 2)))
509, 34, 37, 39, 49lelttrd 8023 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 < (3 · (π / 2)))
5111rexri 7956 . . . . . . . 8 -(π / 2) ∈ ℝ*
5236rexri 7956 . . . . . . . 8 (3 · (π / 2)) ∈ ℝ*
53 elioo2 9857 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
5451, 52, 53mp2an 423 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
559, 33, 50, 54syl3anbrc 1171 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))))
56 coseq0q4123 13395 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5755, 56syl 14 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
581, 57mpbid 146 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 = (π / 2))
59 prid1g 3680 . . . . 5 ((π / 2) ∈ ℝ → (π / 2) ∈ {(π / 2), -(π / 2)})
60 eleq1a 2238 . . . . 5 ((π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
6110, 59, 60mp2b 8 . . . 4 (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
6258, 61syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ {(π / 2), -(π / 2)})
638recnd 7927 . . . . . . 7 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℂ)
6463adantr 274 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
65 cosneg 11668 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
6664, 65syl 14 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = (cos‘𝐴))
67 simplr 520 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘𝐴) = 0)
6866, 67eqtrd 2198 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = 0)
698renegcld 8278 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ∈ ℝ)
7069adantr 274 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
71 0re 7899 . . . . . . . . . . 11 0 ∈ ℝ
7271a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ∈ ℝ)
73 simpr 109 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 < 0)
748adantr 274 . . . . . . . . . . . 12 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7574lt0neg1d 8413 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7673, 75mpbid 146 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 < -𝐴)
7772, 70, 76ltled 8017 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
782a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → π ∈ ℝ)
792a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
806simp2bi 1003 . . . . . . . . . . . . 13 (𝐴 ∈ (-π(,]π) → -π < 𝐴)
8180adantr 274 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -π < 𝐴)
8279, 8, 81ltnegcon1d 8423 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 < π)
8382adantr 274 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 < π)
8470, 78, 83ltled 8017 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ≤ π)
8571, 2elicc2i 9875 . . . . . . . . 9 (-𝐴 ∈ (0[,]π) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴 ∧ -𝐴 ≤ π))
8670, 77, 84, 85syl3anbrc 1171 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ (0[,]π))
87 coseq00topi 13396 . . . . . . . 8 (-𝐴 ∈ (0[,]π) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8886, 87syl 14 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8968, 88mpbid 146 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 = (π / 2))
9064, 89negcon1ad 8204 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -(π / 2) = 𝐴)
9190eqcomd 2171 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 = -(π / 2))
92 prid2g 3681 . . . . 5 (-(π / 2) ∈ ℝ → -(π / 2) ∈ {(π / 2), -(π / 2)})
93 eleq1a 2238 . . . . 5 (-(π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
9411, 92, 93mp2b 8 . . . 4 (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
9591, 94syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
96 pirp 13350 . . . . . . 7 π ∈ ℝ+
9713, 22elrpii 9592 . . . . . . 7 4 ∈ ℝ+
98 rpdivcl 9615 . . . . . . 7 ((π ∈ ℝ+ ∧ 4 ∈ ℝ+) → (π / 4) ∈ ℝ+)
9996, 97, 98mp2an 423 . . . . . 6 (π / 4) ∈ ℝ+
100 rpgt0 9601 . . . . . 6 ((π / 4) ∈ ℝ+ → 0 < (π / 4))
10199, 100ax-mp 5 . . . . 5 0 < (π / 4)
102 lt0neg2 8367 . . . . . 6 ((π / 4) ∈ ℝ → (0 < (π / 4) ↔ -(π / 4) < 0))
10315, 102ax-mp 5 . . . . 5 (0 < (π / 4) ↔ -(π / 4) < 0)
104101, 103mpbi 144 . . . 4 -(π / 4) < 0
105 axltwlin 7966 . . . . 5 ((-(π / 4) ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
10616, 71, 8, 105mp3an12i 1331 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
107104, 106mpi 15 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 𝐴𝐴 < 0))
10862, 95, 107mpjaodan 788 . 2 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
109 elpri 3599 . . . 4 (𝐴 ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)))
110 fveq2 5486 . . . . . 6 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
111 coshalfpi 13358 . . . . . 6 (cos‘(π / 2)) = 0
112110, 111eqtrdi 2215 . . . . 5 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
113 fveq2 5486 . . . . . 6 (𝐴 = -(π / 2) → (cos‘𝐴) = (cos‘-(π / 2)))
114 cosneghalfpi 13359 . . . . . 6 (cos‘-(π / 2)) = 0
115113, 114eqtrdi 2215 . . . . 5 (𝐴 = -(π / 2) → (cos‘𝐴) = 0)
116112, 115jaoi 706 . . . 4 ((𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)) → (cos‘𝐴) = 0)
117109, 116syl 14 . . 3 (𝐴 ∈ {(π / 2), -(π / 2)} → (cos‘𝐴) = 0)
118117adantl 275 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐴 ∈ {(π / 2), -(π / 2)}) → (cos‘𝐴) = 0)
119108, 118impbida 586 1 (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  {cpr 3577   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753   · cmul 7758  *cxr 7932   < clt 7933  cle 7934  -cneg 8070   / cdiv 8568  2c2 8908  3c3 8909  4c4 8910  +crp 9589  (,)cioo 9824  (,]cioc 9825  [,]cicc 9827  cosccos 11586  πcpi 11588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator