ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0negpitopi GIF version

Theorem coseq0negpitopi 15156
Description: Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simplr 528 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (cos‘𝐴) = 0)
2 pire 15106 . . . . . . . . . . . . 13 π ∈ ℝ
32renegcli 8305 . . . . . . . . . . . 12 -π ∈ ℝ
43rexri 8101 . . . . . . . . . . 11 -π ∈ ℝ*
5 elioc2 10028 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π)))
64, 2, 5mp2an 426 . . . . . . . . . 10 (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
76simp1bi 1014 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ∈ ℝ)
87adantr 276 . . . . . . . 8 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
98adantr 276 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ ℝ)
10 halfpire 15112 . . . . . . . . . 10 (π / 2) ∈ ℝ
1110renegcli 8305 . . . . . . . . 9 -(π / 2) ∈ ℝ
1211a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) ∈ ℝ)
13 4re 9084 . . . . . . . . . . 11 4 ∈ ℝ
14 4ap0 9106 . . . . . . . . . . 11 4 # 0
152, 13, 14redivclapi 8823 . . . . . . . . . 10 (π / 4) ∈ ℝ
1615renegcli 8305 . . . . . . . . 9 -(π / 4) ∈ ℝ
1716a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) ∈ ℝ)
18 2lt4 9181 . . . . . . . . . . 11 2 < 4
19 2re 9077 . . . . . . . . . . . . 13 2 ∈ ℝ
20 2pos 9098 . . . . . . . . . . . . 13 0 < 2
2119, 20pm3.2i 272 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
22 4pos 9104 . . . . . . . . . . . . 13 0 < 4
2313, 22pm3.2i 272 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 0 < 4)
24 pipos 15108 . . . . . . . . . . . . 13 0 < π
252, 24pm3.2i 272 . . . . . . . . . . . 12 (π ∈ ℝ ∧ 0 < π)
26 ltdiv2 8931 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (4 ∈ ℝ ∧ 0 < 4) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 4 ↔ (π / 4) < (π / 2)))
2721, 23, 25, 26mp3an 1348 . . . . . . . . . . 11 (2 < 4 ↔ (π / 4) < (π / 2))
2818, 27mpbi 145 . . . . . . . . . 10 (π / 4) < (π / 2)
2915, 10ltnegi 8537 . . . . . . . . . 10 ((π / 4) < (π / 2) ↔ -(π / 2) < -(π / 4))
3028, 29mpbi 145 . . . . . . . . 9 -(π / 2) < -(π / 4)
3130a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < -(π / 4))
32 simpr 110 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 4) < 𝐴)
3312, 17, 9, 31, 32lttrd 8169 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → -(π / 2) < 𝐴)
342a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π ∈ ℝ)
35 3re 9081 . . . . . . . . . 10 3 ∈ ℝ
3635, 10remulcli 8057 . . . . . . . . 9 (3 · (π / 2)) ∈ ℝ
3736a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → (3 · (π / 2)) ∈ ℝ)
386simp3bi 1016 . . . . . . . . 9 (𝐴 ∈ (-π(,]π) → 𝐴 ≤ π)
3938ad2antrr 488 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ≤ π)
40 2lt3 9178 . . . . . . . . . . 11 2 < 3
41 3pos 9101 . . . . . . . . . . . . 13 0 < 3
4235, 41pm3.2i 272 . . . . . . . . . . . 12 (3 ∈ ℝ ∧ 0 < 3)
43 ltdiv2 8931 . . . . . . . . . . . 12 (((2 ∈ ℝ ∧ 0 < 2) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 3 ↔ (π / 3) < (π / 2)))
4421, 42, 25, 43mp3an 1348 . . . . . . . . . . 11 (2 < 3 ↔ (π / 3) < (π / 2))
4540, 44mpbi 145 . . . . . . . . . 10 (π / 3) < (π / 2)
46 ltdivmul 8920 . . . . . . . . . . 11 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((π / 3) < (π / 2) ↔ π < (3 · (π / 2))))
472, 10, 42, 46mp3an 1348 . . . . . . . . . 10 ((π / 3) < (π / 2) ↔ π < (3 · (π / 2)))
4845, 47mpbi 145 . . . . . . . . 9 π < (3 · (π / 2))
4948a1i 9 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → π < (3 · (π / 2)))
509, 34, 37, 39, 49lelttrd 8168 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 < (3 · (π / 2)))
5111rexri 8101 . . . . . . . 8 -(π / 2) ∈ ℝ*
5236rexri 8101 . . . . . . . 8 (3 · (π / 2)) ∈ ℝ*
53 elioo2 10013 . . . . . . . 8 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
5451, 52, 53mp2an 426 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
559, 33, 50, 54syl3anbrc 1183 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))))
56 coseq0q4123 15154 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5755, 56syl 14 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
581, 57mpbid 147 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 = (π / 2))
59 prid1g 3727 . . . . 5 ((π / 2) ∈ ℝ → (π / 2) ∈ {(π / 2), -(π / 2)})
60 eleq1a 2268 . . . . 5 ((π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
6110, 59, 60mp2b 8 . . . 4 (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
6258, 61syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ -(π / 4) < 𝐴) → 𝐴 ∈ {(π / 2), -(π / 2)})
638recnd 8072 . . . . . . 7 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℂ)
6463adantr 276 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
65 cosneg 11909 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
6664, 65syl 14 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = (cos‘𝐴))
67 simplr 528 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘𝐴) = 0)
6866, 67eqtrd 2229 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (cos‘-𝐴) = 0)
698renegcld 8423 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ∈ ℝ)
7069adantr 276 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
71 0re 8043 . . . . . . . . . . 11 0 ∈ ℝ
7271a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ∈ ℝ)
73 simpr 110 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 < 0)
748adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7574lt0neg1d 8559 . . . . . . . . . . 11 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7673, 75mpbid 147 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 < -𝐴)
7772, 70, 76ltled 8162 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
782a1i 9 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → π ∈ ℝ)
792a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
806simp2bi 1015 . . . . . . . . . . . . 13 (𝐴 ∈ (-π(,]π) → -π < 𝐴)
8180adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -π < 𝐴)
8279, 8, 81ltnegcon1d 8569 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 < π)
8382adantr 276 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 < π)
8470, 78, 83ltled 8162 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ≤ π)
8571, 2elicc2i 10031 . . . . . . . . 9 (-𝐴 ∈ (0[,]π) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴 ∧ -𝐴 ≤ π))
8670, 77, 84, 85syl3anbrc 1183 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 ∈ (0[,]π))
87 coseq00topi 15155 . . . . . . . 8 (-𝐴 ∈ (0[,]π) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8886, 87syl 14 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
8968, 88mpbid 147 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -𝐴 = (π / 2))
9064, 89negcon1ad 8349 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → -(π / 2) = 𝐴)
9190eqcomd 2202 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 = -(π / 2))
92 prid2g 3728 . . . . 5 (-(π / 2) ∈ ℝ → -(π / 2) ∈ {(π / 2), -(π / 2)})
93 eleq1a 2268 . . . . 5 (-(π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
9411, 92, 93mp2b 8 . . . 4 (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
9591, 94syl 14 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
96 pirp 15109 . . . . . . 7 π ∈ ℝ+
9713, 22elrpii 9748 . . . . . . 7 4 ∈ ℝ+
98 rpdivcl 9771 . . . . . . 7 ((π ∈ ℝ+ ∧ 4 ∈ ℝ+) → (π / 4) ∈ ℝ+)
9996, 97, 98mp2an 426 . . . . . 6 (π / 4) ∈ ℝ+
100 rpgt0 9757 . . . . . 6 ((π / 4) ∈ ℝ+ → 0 < (π / 4))
10199, 100ax-mp 5 . . . . 5 0 < (π / 4)
102 lt0neg2 8513 . . . . . 6 ((π / 4) ∈ ℝ → (0 < (π / 4) ↔ -(π / 4) < 0))
10315, 102ax-mp 5 . . . . 5 (0 < (π / 4) ↔ -(π / 4) < 0)
104101, 103mpbi 145 . . . 4 -(π / 4) < 0
105 axltwlin 8111 . . . . 5 ((-(π / 4) ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
10616, 71, 8, 105mp3an12i 1352 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 0 → (-(π / 4) < 𝐴𝐴 < 0)))
107104, 106mpi 15 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (-(π / 4) < 𝐴𝐴 < 0))
10862, 95, 107mpjaodan 799 . 2 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
109 elpri 3646 . . . 4 (𝐴 ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)))
110 fveq2 5561 . . . . . 6 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
111 coshalfpi 15117 . . . . . 6 (cos‘(π / 2)) = 0
112110, 111eqtrdi 2245 . . . . 5 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
113 fveq2 5561 . . . . . 6 (𝐴 = -(π / 2) → (cos‘𝐴) = (cos‘-(π / 2)))
114 cosneghalfpi 15118 . . . . . 6 (cos‘-(π / 2)) = 0
115113, 114eqtrdi 2245 . . . . 5 (𝐴 = -(π / 2) → (cos‘𝐴) = 0)
116112, 115jaoi 717 . . . 4 ((𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)) → (cos‘𝐴) = 0)
117109, 116syl 14 . . 3 (𝐴 ∈ {(π / 2), -(π / 2)} → (cos‘𝐴) = 0)
118117adantl 277 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐴 ∈ {(π / 2), -(π / 2)}) → (cos‘𝐴) = 0)
119108, 118impbida 596 1 (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  {cpr 3624   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896   · cmul 7901  *cxr 8077   < clt 8078  cle 8079  -cneg 8215   / cdiv 8716  2c2 9058  3c3 9059  4c4 9060  +crp 9745  (,)cioo 9980  (,]cioc 9981  [,]cicc 9983  cosccos 11827  πcpi 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-ioo 9984  df-ioc 9985  df-ico 9986  df-icc 9987  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832  df-cos 11833  df-pi 11835  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-cncf 14891  df-limced 14976  df-dvap 14977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator