ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlema GIF version

Theorem bezoutlema 12139
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
bezoutlema.a (𝜃𝐴 ∈ ℕ0)
bezoutlema.b (𝜃𝐵 ∈ ℕ0)
Assertion
Ref Expression
bezoutlema (𝜃[𝐴 / 𝑟]𝜑)
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡   𝐵,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑠,𝑟)   𝜃(𝑡,𝑠,𝑟)

Proof of Theorem bezoutlema
StepHypRef Expression
1 1z 9346 . . 3 1 ∈ ℤ
2 0z 9331 . . 3 0 ∈ ℤ
3 bezoutlema.b . . . . . . 7 (𝜃𝐵 ∈ ℕ0)
43nn0cnd 9298 . . . . . 6 (𝜃𝐵 ∈ ℂ)
54mul01d 8414 . . . . 5 (𝜃 → (𝐵 · 0) = 0)
65oveq2d 5935 . . . 4 (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0))
7 bezoutlema.a . . . . . . 7 (𝜃𝐴 ∈ ℕ0)
87nn0cnd 9298 . . . . . 6 (𝜃𝐴 ∈ ℂ)
9 1cnd 8037 . . . . . 6 (𝜃 → 1 ∈ ℂ)
108, 9mulcld 8042 . . . . 5 (𝜃 → (𝐴 · 1) ∈ ℂ)
1110addridd 8170 . . . 4 (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1))
128mulridd 8038 . . . 4 (𝜃 → (𝐴 · 1) = 𝐴)
136, 11, 123eqtrrd 2231 . . 3 (𝜃𝐴 = ((𝐴 · 1) + (𝐵 · 0)))
14 oveq2 5927 . . . . . 6 (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1))
1514oveq1d 5934 . . . . 5 (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡)))
1615eqeq2d 2205 . . . 4 (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡))))
17 oveq2 5927 . . . . . 6 (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0))
1817oveq2d 5935 . . . . 5 (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0)))
1918eqeq2d 2205 . . . 4 (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))))
2016, 19rspc2ev 2880 . . 3 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
211, 2, 13, 20mp3an12i 1352 . 2 (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
22 bezoutlema.is-bezout . . . . 5 (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
23 eqeq1 2200 . . . . . 6 (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
24232rexbidv 2519 . . . . 5 (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2522, 24bitrid 192 . . . 4 (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2625sbcieg 3019 . . 3 (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
277, 26syl 14 . 2 (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2821, 27mpbird 167 1 (𝜃[𝐴 / 𝑟]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  wrex 2473  [wsbc 2986  (class class class)co 5919  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  0cn0 9243  cz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321
This theorem is referenced by:  bezoutlemex  12141
  Copyright terms: Public domain W3C validator