ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlema GIF version

Theorem bezoutlema 12435
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
bezoutlema.a (𝜃𝐴 ∈ ℕ0)
bezoutlema.b (𝜃𝐵 ∈ ℕ0)
Assertion
Ref Expression
bezoutlema (𝜃[𝐴 / 𝑟]𝜑)
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡   𝐵,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑠,𝑟)   𝜃(𝑡,𝑠,𝑟)

Proof of Theorem bezoutlema
StepHypRef Expression
1 1z 9433 . . 3 1 ∈ ℤ
2 0z 9418 . . 3 0 ∈ ℤ
3 bezoutlema.b . . . . . . 7 (𝜃𝐵 ∈ ℕ0)
43nn0cnd 9385 . . . . . 6 (𝜃𝐵 ∈ ℂ)
54mul01d 8500 . . . . 5 (𝜃 → (𝐵 · 0) = 0)
65oveq2d 5983 . . . 4 (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0))
7 bezoutlema.a . . . . . . 7 (𝜃𝐴 ∈ ℕ0)
87nn0cnd 9385 . . . . . 6 (𝜃𝐴 ∈ ℂ)
9 1cnd 8123 . . . . . 6 (𝜃 → 1 ∈ ℂ)
108, 9mulcld 8128 . . . . 5 (𝜃 → (𝐴 · 1) ∈ ℂ)
1110addridd 8256 . . . 4 (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1))
128mulridd 8124 . . . 4 (𝜃 → (𝐴 · 1) = 𝐴)
136, 11, 123eqtrrd 2245 . . 3 (𝜃𝐴 = ((𝐴 · 1) + (𝐵 · 0)))
14 oveq2 5975 . . . . . 6 (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1))
1514oveq1d 5982 . . . . 5 (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡)))
1615eqeq2d 2219 . . . 4 (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡))))
17 oveq2 5975 . . . . . 6 (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0))
1817oveq2d 5983 . . . . 5 (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0)))
1918eqeq2d 2219 . . . 4 (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))))
2016, 19rspc2ev 2899 . . 3 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
211, 2, 13, 20mp3an12i 1354 . 2 (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
22 bezoutlema.is-bezout . . . . 5 (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
23 eqeq1 2214 . . . . . 6 (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
24232rexbidv 2533 . . . . 5 (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2522, 24bitrid 192 . . . 4 (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2625sbcieg 3038 . . 3 (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
277, 26syl 14 . 2 (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2821, 27mpbird 167 1 (𝜃[𝐴 / 𝑟]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2178  wrex 2487  [wsbc 3005  (class class class)co 5967  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965  0cn0 9330  cz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by:  bezoutlemex  12437
  Copyright terms: Public domain W3C validator