| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlema | GIF version | ||
| Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
| bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bezoutlema | ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9397 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 0z 9382 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
| 4 | 3 | nn0cnd 9349 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
| 5 | 4 | mul01d 8464 | . . . . 5 ⊢ (𝜃 → (𝐵 · 0) = 0) |
| 6 | 5 | oveq2d 5959 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0)) |
| 7 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
| 8 | 7 | nn0cnd 9349 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
| 9 | 1cnd 8087 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
| 10 | 8, 9 | mulcld 8092 | . . . . 5 ⊢ (𝜃 → (𝐴 · 1) ∈ ℂ) |
| 11 | 10 | addridd 8220 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1)) |
| 12 | 8 | mulridd 8088 | . . . 4 ⊢ (𝜃 → (𝐴 · 1) = 𝐴) |
| 13 | 6, 11, 12 | 3eqtrrd 2242 | . . 3 ⊢ (𝜃 → 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) |
| 14 | oveq2 5951 | . . . . . 6 ⊢ (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1)) | |
| 15 | 14 | oveq1d 5958 | . . . . 5 ⊢ (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡))) |
| 16 | 15 | eqeq2d 2216 | . . . 4 ⊢ (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)))) |
| 17 | oveq2 5951 | . . . . . 6 ⊢ (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0)) | |
| 18 | 17 | oveq2d 5959 | . . . . 5 ⊢ (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0))) |
| 19 | 18 | eqeq2d 2216 | . . . 4 ⊢ (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0)))) |
| 20 | 16, 19 | rspc2ev 2891 | . . 3 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 21 | 1, 2, 13, 20 | mp3an12i 1353 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
| 23 | eqeq1 2211 | . . . . . 6 ⊢ (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
| 24 | 23 | 2rexbidv 2530 | . . . . 5 ⊢ (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 26 | 25 | sbcieg 3030 | . . 3 ⊢ (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 [wsbc 2997 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 ℕ0cn0 9294 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 |
| This theorem is referenced by: bezoutlemex 12293 |
| Copyright terms: Public domain | W3C validator |