| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlema | GIF version | ||
| Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
| bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bezoutlema | ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9468 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 0z 9453 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
| 4 | 3 | nn0cnd 9420 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
| 5 | 4 | mul01d 8535 | . . . . 5 ⊢ (𝜃 → (𝐵 · 0) = 0) |
| 6 | 5 | oveq2d 6016 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0)) |
| 7 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
| 8 | 7 | nn0cnd 9420 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
| 9 | 1cnd 8158 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
| 10 | 8, 9 | mulcld 8163 | . . . . 5 ⊢ (𝜃 → (𝐴 · 1) ∈ ℂ) |
| 11 | 10 | addridd 8291 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1)) |
| 12 | 8 | mulridd 8159 | . . . 4 ⊢ (𝜃 → (𝐴 · 1) = 𝐴) |
| 13 | 6, 11, 12 | 3eqtrrd 2267 | . . 3 ⊢ (𝜃 → 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) |
| 14 | oveq2 6008 | . . . . . 6 ⊢ (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1)) | |
| 15 | 14 | oveq1d 6015 | . . . . 5 ⊢ (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡))) |
| 16 | 15 | eqeq2d 2241 | . . . 4 ⊢ (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)))) |
| 17 | oveq2 6008 | . . . . . 6 ⊢ (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0)) | |
| 18 | 17 | oveq2d 6016 | . . . . 5 ⊢ (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0))) |
| 19 | 18 | eqeq2d 2241 | . . . 4 ⊢ (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0)))) |
| 20 | 16, 19 | rspc2ev 2922 | . . 3 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 21 | 1, 2, 13, 20 | mp3an12i 1375 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
| 23 | eqeq1 2236 | . . . . . 6 ⊢ (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
| 24 | 23 | 2rexbidv 2555 | . . . . 5 ⊢ (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 26 | 25 | sbcieg 3061 | . . 3 ⊢ (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 [wsbc 3028 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 ℕ0cn0 9365 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: bezoutlemex 12517 |
| Copyright terms: Public domain | W3C validator |