ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlema GIF version

Theorem bezoutlema 10870
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
bezoutlema.a (𝜃𝐴 ∈ ℕ0)
bezoutlema.b (𝜃𝐵 ∈ ℕ0)
Assertion
Ref Expression
bezoutlema (𝜃[𝐴 / 𝑟]𝜑)
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡   𝐵,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑠,𝑟)   𝜃(𝑡,𝑠,𝑟)

Proof of Theorem bezoutlema
StepHypRef Expression
1 1z 8709 . . 3 1 ∈ ℤ
2 0z 8694 . . 3 0 ∈ ℤ
3 bezoutlema.b . . . . . . 7 (𝜃𝐵 ∈ ℕ0)
43nn0cnd 8661 . . . . . 6 (𝜃𝐵 ∈ ℂ)
54mul01d 7815 . . . . 5 (𝜃 → (𝐵 · 0) = 0)
65oveq2d 5629 . . . 4 (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0))
7 bezoutlema.a . . . . . . 7 (𝜃𝐴 ∈ ℕ0)
87nn0cnd 8661 . . . . . 6 (𝜃𝐴 ∈ ℂ)
9 1cnd 7448 . . . . . 6 (𝜃 → 1 ∈ ℂ)
108, 9mulcld 7452 . . . . 5 (𝜃 → (𝐴 · 1) ∈ ℂ)
1110addid1d 7575 . . . 4 (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1))
128mulid1d 7449 . . . 4 (𝜃 → (𝐴 · 1) = 𝐴)
136, 11, 123eqtrrd 2122 . . 3 (𝜃𝐴 = ((𝐴 · 1) + (𝐵 · 0)))
14 oveq2 5621 . . . . . 6 (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1))
1514oveq1d 5628 . . . . 5 (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡)))
1615eqeq2d 2096 . . . 4 (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡))))
17 oveq2 5621 . . . . . 6 (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0))
1817oveq2d 5629 . . . . 5 (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0)))
1918eqeq2d 2096 . . . 4 (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))))
2016, 19rspc2ev 2728 . . 3 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
211, 2, 13, 20mp3an12i 1275 . 2 (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
22 bezoutlema.is-bezout . . . . 5 (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
23 eqeq1 2091 . . . . . 6 (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
24232rexbidv 2399 . . . . 5 (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2522, 24syl5bb 190 . . . 4 (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2625sbcieg 2860 . . 3 (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
277, 26syl 14 . 2 (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2821, 27mpbird 165 1 (𝜃[𝐴 / 𝑟]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1287  wcel 1436  wrex 2356  [wsbc 2829  (class class class)co 5613  0cc0 7294  1c1 7295   + caddc 7297   · cmul 7299  0cn0 8606  cz 8683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-inn 8358  df-n0 8607  df-z 8684
This theorem is referenced by:  bezoutlemex  10872
  Copyright terms: Public domain W3C validator