| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlema | GIF version | ||
| Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
| bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bezoutlema | ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9433 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 0z 9418 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
| 4 | 3 | nn0cnd 9385 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
| 5 | 4 | mul01d 8500 | . . . . 5 ⊢ (𝜃 → (𝐵 · 0) = 0) |
| 6 | 5 | oveq2d 5983 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0)) |
| 7 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
| 8 | 7 | nn0cnd 9385 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
| 9 | 1cnd 8123 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
| 10 | 8, 9 | mulcld 8128 | . . . . 5 ⊢ (𝜃 → (𝐴 · 1) ∈ ℂ) |
| 11 | 10 | addridd 8256 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1)) |
| 12 | 8 | mulridd 8124 | . . . 4 ⊢ (𝜃 → (𝐴 · 1) = 𝐴) |
| 13 | 6, 11, 12 | 3eqtrrd 2245 | . . 3 ⊢ (𝜃 → 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) |
| 14 | oveq2 5975 | . . . . . 6 ⊢ (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1)) | |
| 15 | 14 | oveq1d 5982 | . . . . 5 ⊢ (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡))) |
| 16 | 15 | eqeq2d 2219 | . . . 4 ⊢ (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)))) |
| 17 | oveq2 5975 | . . . . . 6 ⊢ (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0)) | |
| 18 | 17 | oveq2d 5983 | . . . . 5 ⊢ (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0))) |
| 19 | 18 | eqeq2d 2219 | . . . 4 ⊢ (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0)))) |
| 20 | 16, 19 | rspc2ev 2899 | . . 3 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 21 | 1, 2, 13, 20 | mp3an12i 1354 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
| 23 | eqeq1 2214 | . . . . . 6 ⊢ (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
| 24 | 23 | 2rexbidv 2533 | . . . . 5 ⊢ (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 26 | 25 | sbcieg 3038 | . . 3 ⊢ (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∃wrex 2487 [wsbc 3005 (class class class)co 5967 0cc0 7960 1c1 7961 + caddc 7963 · cmul 7965 ℕ0cn0 9330 ℤcz 9407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: bezoutlemex 12437 |
| Copyright terms: Public domain | W3C validator |