| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlema | GIF version | ||
| Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
| bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| bezoutlema | ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9352 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 0z 9337 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
| 4 | 3 | nn0cnd 9304 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
| 5 | 4 | mul01d 8419 | . . . . 5 ⊢ (𝜃 → (𝐵 · 0) = 0) |
| 6 | 5 | oveq2d 5938 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0)) |
| 7 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
| 8 | 7 | nn0cnd 9304 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
| 9 | 1cnd 8042 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
| 10 | 8, 9 | mulcld 8047 | . . . . 5 ⊢ (𝜃 → (𝐴 · 1) ∈ ℂ) |
| 11 | 10 | addridd 8175 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1)) |
| 12 | 8 | mulridd 8043 | . . . 4 ⊢ (𝜃 → (𝐴 · 1) = 𝐴) |
| 13 | 6, 11, 12 | 3eqtrrd 2234 | . . 3 ⊢ (𝜃 → 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) |
| 14 | oveq2 5930 | . . . . . 6 ⊢ (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1)) | |
| 15 | 14 | oveq1d 5937 | . . . . 5 ⊢ (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡))) |
| 16 | 15 | eqeq2d 2208 | . . . 4 ⊢ (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)))) |
| 17 | oveq2 5930 | . . . . . 6 ⊢ (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0)) | |
| 18 | 17 | oveq2d 5938 | . . . . 5 ⊢ (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0))) |
| 19 | 18 | eqeq2d 2208 | . . . 4 ⊢ (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0)))) |
| 20 | 16, 19 | rspc2ev 2883 | . . 3 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 21 | 1, 2, 13, 20 | mp3an12i 1352 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
| 22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
| 23 | eqeq1 2203 | . . . . . 6 ⊢ (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
| 24 | 23 | 2rexbidv 2522 | . . . . 5 ⊢ (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 26 | 25 | sbcieg 3022 | . . 3 ⊢ (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 [wsbc 2989 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 · cmul 7884 ℕ0cn0 9249 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: bezoutlemex 12168 |
| Copyright terms: Public domain | W3C validator |