ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlema GIF version

Theorem bezoutlema 11917
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
bezoutlema.a (𝜃𝐴 ∈ ℕ0)
bezoutlema.b (𝜃𝐵 ∈ ℕ0)
Assertion
Ref Expression
bezoutlema (𝜃[𝐴 / 𝑟]𝜑)
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡   𝐵,𝑟,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑠,𝑟)   𝜃(𝑡,𝑠,𝑟)

Proof of Theorem bezoutlema
StepHypRef Expression
1 1z 9208 . . 3 1 ∈ ℤ
2 0z 9193 . . 3 0 ∈ ℤ
3 bezoutlema.b . . . . . . 7 (𝜃𝐵 ∈ ℕ0)
43nn0cnd 9160 . . . . . 6 (𝜃𝐵 ∈ ℂ)
54mul01d 8282 . . . . 5 (𝜃 → (𝐵 · 0) = 0)
65oveq2d 5852 . . . 4 (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0))
7 bezoutlema.a . . . . . . 7 (𝜃𝐴 ∈ ℕ0)
87nn0cnd 9160 . . . . . 6 (𝜃𝐴 ∈ ℂ)
9 1cnd 7906 . . . . . 6 (𝜃 → 1 ∈ ℂ)
108, 9mulcld 7910 . . . . 5 (𝜃 → (𝐴 · 1) ∈ ℂ)
1110addid1d 8038 . . . 4 (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1))
128mulid1d 7907 . . . 4 (𝜃 → (𝐴 · 1) = 𝐴)
136, 11, 123eqtrrd 2202 . . 3 (𝜃𝐴 = ((𝐴 · 1) + (𝐵 · 0)))
14 oveq2 5844 . . . . . 6 (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1))
1514oveq1d 5851 . . . . 5 (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡)))
1615eqeq2d 2176 . . . 4 (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡))))
17 oveq2 5844 . . . . . 6 (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0))
1817oveq2d 5852 . . . . 5 (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0)))
1918eqeq2d 2176 . . . 4 (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))))
2016, 19rspc2ev 2840 . . 3 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
211, 2, 13, 20mp3an12i 1330 . 2 (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
22 bezoutlema.is-bezout . . . . 5 (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
23 eqeq1 2171 . . . . . 6 (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
24232rexbidv 2489 . . . . 5 (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2522, 24syl5bb 191 . . . 4 (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2625sbcieg 2978 . . 3 (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
277, 26syl 14 . 2 (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
2821, 27mpbird 166 1 (𝜃[𝐴 / 𝑟]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1342  wcel 2135  wrex 2443  [wsbc 2946  (class class class)co 5836  0cc0 7744  1c1 7745   + caddc 7747   · cmul 7749  0cn0 9105  cz 9182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183
This theorem is referenced by:  bezoutlemex  11919
  Copyright terms: Public domain W3C validator