Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bezoutlema | GIF version |
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.) |
Ref | Expression |
---|---|
bezoutlema.is-bezout | ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
bezoutlema.a | ⊢ (𝜃 → 𝐴 ∈ ℕ0) |
bezoutlema.b | ⊢ (𝜃 → 𝐵 ∈ ℕ0) |
Ref | Expression |
---|---|
bezoutlema | ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9252 | . . 3 ⊢ 1 ∈ ℤ | |
2 | 0z 9237 | . . 3 ⊢ 0 ∈ ℤ | |
3 | bezoutlema.b | . . . . . . 7 ⊢ (𝜃 → 𝐵 ∈ ℕ0) | |
4 | 3 | nn0cnd 9204 | . . . . . 6 ⊢ (𝜃 → 𝐵 ∈ ℂ) |
5 | 4 | mul01d 8324 | . . . . 5 ⊢ (𝜃 → (𝐵 · 0) = 0) |
6 | 5 | oveq2d 5881 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + (𝐵 · 0)) = ((𝐴 · 1) + 0)) |
7 | bezoutlema.a | . . . . . . 7 ⊢ (𝜃 → 𝐴 ∈ ℕ0) | |
8 | 7 | nn0cnd 9204 | . . . . . 6 ⊢ (𝜃 → 𝐴 ∈ ℂ) |
9 | 1cnd 7948 | . . . . . 6 ⊢ (𝜃 → 1 ∈ ℂ) | |
10 | 8, 9 | mulcld 7952 | . . . . 5 ⊢ (𝜃 → (𝐴 · 1) ∈ ℂ) |
11 | 10 | addid1d 8080 | . . . 4 ⊢ (𝜃 → ((𝐴 · 1) + 0) = (𝐴 · 1)) |
12 | 8 | mulid1d 7949 | . . . 4 ⊢ (𝜃 → (𝐴 · 1) = 𝐴) |
13 | 6, 11, 12 | 3eqtrrd 2213 | . . 3 ⊢ (𝜃 → 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) |
14 | oveq2 5873 | . . . . . 6 ⊢ (𝑠 = 1 → (𝐴 · 𝑠) = (𝐴 · 1)) | |
15 | 14 | oveq1d 5880 | . . . . 5 ⊢ (𝑠 = 1 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 𝑡))) |
16 | 15 | eqeq2d 2187 | . . . 4 ⊢ (𝑠 = 1 → (𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)))) |
17 | oveq2 5873 | . . . . . 6 ⊢ (𝑡 = 0 → (𝐵 · 𝑡) = (𝐵 · 0)) | |
18 | 17 | oveq2d 5881 | . . . . 5 ⊢ (𝑡 = 0 → ((𝐴 · 1) + (𝐵 · 𝑡)) = ((𝐴 · 1) + (𝐵 · 0))) |
19 | 18 | eqeq2d 2187 | . . . 4 ⊢ (𝑡 = 0 → (𝐴 = ((𝐴 · 1) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 1) + (𝐵 · 0)))) |
20 | 16, 19 | rspc2ev 2854 | . . 3 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 = ((𝐴 · 1) + (𝐵 · 0))) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
21 | 1, 2, 13, 20 | mp3an12i 1341 | . 2 ⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
22 | bezoutlema.is-bezout | . . . . 5 ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | |
23 | eqeq1 2182 | . . . . . 6 ⊢ (𝑟 = 𝐴 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | |
24 | 23 | 2rexbidv 2500 | . . . . 5 ⊢ (𝑟 = 𝐴 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
25 | 22, 24 | bitrid 192 | . . . 4 ⊢ (𝑟 = 𝐴 → (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
26 | 25 | sbcieg 2993 | . . 3 ⊢ (𝐴 ∈ ℕ0 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
27 | 7, 26 | syl 14 | . 2 ⊢ (𝜃 → ([𝐴 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐴 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
28 | 21, 27 | mpbird 167 | 1 ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∃wrex 2454 [wsbc 2960 (class class class)co 5865 0cc0 7786 1c1 7787 + caddc 7789 · cmul 7791 ℕ0cn0 9149 ℤcz 9226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-z 9227 |
This theorem is referenced by: bezoutlemex 11969 |
Copyright terms: Public domain | W3C validator |