ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodge1 GIF version

Theorem fprodge1 11650
Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph 𝑘𝜑
fprodge1.a (𝜑𝐴 ∈ Fin)
fprodge1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge1.ge ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
Assertion
Ref Expression
fprodge1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 8019 . 2 1 ∈ ℝ*
2 pnfxr 8013 . 2 +∞ ∈ ℝ*
3 fprodge1.ph . . 3 𝑘𝜑
4 1re 7959 . . . . . 6 1 ∈ ℝ
5 icossre 9957 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ)
64, 2, 5mp2an 426 . . . . 5 (1[,)+∞) ⊆ ℝ
7 ax-resscn 7906 . . . . 5 ℝ ⊆ ℂ
86, 7sstri 3166 . . . 4 (1[,)+∞) ⊆ ℂ
98a1i 9 . . 3 (𝜑 → (1[,)+∞) ⊆ ℂ)
101a1i 9 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*)
112a1i 9 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*)
126sseli 3153 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
1312adantr 276 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
146sseli 3153 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
1514adantl 277 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
1613, 15remulcld 7991 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ)
1716rexrd 8010 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*)
18 1t1e1 9074 . . . . . 6 (1 · 1) = 1
194a1i 9 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ)
20 0le1 8441 . . . . . . . 8 0 ≤ 1
2120a1i 9 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1)
22 icogelb 10269 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
231, 2, 22mp3an12 1327 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
2423adantr 276 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
25 icogelb 10269 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
261, 2, 25mp3an12 1327 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2726adantl 277 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 8902 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦))
2918, 28eqbrtrrid 4041 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦))
3016ltpnfd 9784 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞)
3110, 11, 17, 29, 30elicod 10268 . . . 4 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞))
3231adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞))
33 fprodge1.a . . 3 (𝜑𝐴 ∈ Fin)
341a1i 9 . . . 4 ((𝜑𝑘𝐴) → 1 ∈ ℝ*)
352a1i 9 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
36 fprodge1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3736rexrd 8010 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
38 fprodge1.ge . . . 4 ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
3936ltpnfd 9784 . . . 4 ((𝜑𝑘𝐴) → 𝐵 < +∞)
4034, 35, 37, 38, 39elicod 10268 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (1[,)+∞))
41 1le1 8532 . . . . 5 1 ≤ 1
42 ltpnf 9783 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
434, 42ax-mp 5 . . . . 5 1 < +∞
44 elico2 9940 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)))
454, 2, 44mp2an 426 . . . . 5 (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))
464, 41, 43, 45mpbir3an 1179 . . . 4 1 ∈ (1[,)+∞)
4746a1i 9 . . 3 (𝜑 → 1 ∈ (1[,)+∞))
483, 9, 32, 33, 40, 47fprodcllemf 11624 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (1[,)+∞))
49 icogelb 10269 . 2 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘𝐴 𝐵)
501, 2, 48, 49mp3an12i 1341 1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wnf 1460  wcel 2148  wss 3131   class class class wbr 4005  (class class class)co 5878  Fincfn 6743  cc 7812  cr 7813  0cc0 7814  1c1 7815   · cmul 7819  +∞cpnf 7992  *cxr 7994   < clt 7995  cle 7996  [,)cico 9893  cprod 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-proddc 11562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator