| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodge1 | GIF version | ||
| Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodge1.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodge1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodge1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fprodge1.ge | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fprodge1 | ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 8102 | . 2 ⊢ 1 ∈ ℝ* | |
| 2 | pnfxr 8096 | . 2 ⊢ +∞ ∈ ℝ* | |
| 3 | fprodge1.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 4 | 1re 8042 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 5 | icossre 10046 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ) | |
| 6 | 4, 2, 5 | mp2an 426 | . . . . 5 ⊢ (1[,)+∞) ⊆ ℝ |
| 7 | ax-resscn 7988 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 8 | 6, 7 | sstri 3193 | . . . 4 ⊢ (1[,)+∞) ⊆ ℂ |
| 9 | 8 | a1i 9 | . . 3 ⊢ (𝜑 → (1[,)+∞) ⊆ ℂ) |
| 10 | 1 | a1i 9 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*) |
| 11 | 2 | a1i 9 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*) |
| 12 | 6 | sseli 3180 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ) |
| 13 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ) |
| 14 | 6 | sseli 3180 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ) |
| 15 | 14 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ) |
| 16 | 13, 15 | remulcld 8074 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ) |
| 17 | 16 | rexrd 8093 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*) |
| 18 | 1t1e1 9160 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 19 | 4 | a1i 9 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ) |
| 20 | 0le1 8525 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 21 | 20 | a1i 9 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1) |
| 22 | icogelb 10372 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥) | |
| 23 | 1, 2, 22 | mp3an12 1338 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥) |
| 24 | 23 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥) |
| 25 | icogelb 10372 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) | |
| 26 | 1, 2, 25 | mp3an12 1338 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦) |
| 27 | 26 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) |
| 28 | 19, 13, 19, 15, 21, 21, 24, 27 | lemul12ad 8986 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦)) |
| 29 | 18, 28 | eqbrtrrid 4070 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦)) |
| 30 | 16 | ltpnfd 9873 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞) |
| 31 | 10, 11, 17, 29, 30 | elicod 10371 | . . . 4 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
| 32 | 31 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
| 33 | fprodge1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 34 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℝ*) |
| 35 | 2 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → +∞ ∈ ℝ*) |
| 36 | fprodge1.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 37 | 36 | rexrd 8093 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 38 | fprodge1.ge | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) | |
| 39 | 36 | ltpnfd 9873 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < +∞) |
| 40 | 34, 35, 37, 38, 39 | elicod 10371 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (1[,)+∞)) |
| 41 | 1le1 8616 | . . . . 5 ⊢ 1 ≤ 1 | |
| 42 | ltpnf 9872 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 43 | 4, 42 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 44 | elico2 10029 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))) | |
| 45 | 4, 2, 44 | mp2an 426 | . . . . 5 ⊢ (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)) |
| 46 | 4, 41, 43, 45 | mpbir3an 1181 | . . . 4 ⊢ 1 ∈ (1[,)+∞) |
| 47 | 46 | a1i 9 | . . 3 ⊢ (𝜑 → 1 ∈ (1[,)+∞)) |
| 48 | 3, 9, 32, 33, 40, 47 | fprodcllemf 11795 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) |
| 49 | icogelb 10372 | . 2 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
| 50 | 1, 2, 48, 49 | mp3an12i 1352 | 1 ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 Ⅎwnf 1474 ∈ wcel 2167 ⊆ wss 3157 class class class wbr 4034 (class class class)co 5925 Fincfn 6808 ℂcc 7894 ℝcr 7895 0cc0 7896 1c1 7897 · cmul 7901 +∞cpnf 8075 ℝ*cxr 8077 < clt 8078 ≤ cle 8079 [,)cico 9982 ∏cprod 11732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-ico 9986 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-proddc 11733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |