| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodge1 | GIF version | ||
| Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodge1.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodge1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodge1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fprodge1.ge | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fprodge1 | ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 8130 | . 2 ⊢ 1 ∈ ℝ* | |
| 2 | pnfxr 8124 | . 2 ⊢ +∞ ∈ ℝ* | |
| 3 | fprodge1.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 4 | 1re 8070 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 5 | icossre 10075 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ) | |
| 6 | 4, 2, 5 | mp2an 426 | . . . . 5 ⊢ (1[,)+∞) ⊆ ℝ |
| 7 | ax-resscn 8016 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 8 | 6, 7 | sstri 3201 | . . . 4 ⊢ (1[,)+∞) ⊆ ℂ |
| 9 | 8 | a1i 9 | . . 3 ⊢ (𝜑 → (1[,)+∞) ⊆ ℂ) |
| 10 | 1 | a1i 9 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*) |
| 11 | 2 | a1i 9 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*) |
| 12 | 6 | sseli 3188 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ) |
| 13 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ) |
| 14 | 6 | sseli 3188 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ) |
| 15 | 14 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ) |
| 16 | 13, 15 | remulcld 8102 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ) |
| 17 | 16 | rexrd 8121 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*) |
| 18 | 1t1e1 9188 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 19 | 4 | a1i 9 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ) |
| 20 | 0le1 8553 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 21 | 20 | a1i 9 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1) |
| 22 | icogelb 10406 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥) | |
| 23 | 1, 2, 22 | mp3an12 1339 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥) |
| 24 | 23 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥) |
| 25 | icogelb 10406 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) | |
| 26 | 1, 2, 25 | mp3an12 1339 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦) |
| 27 | 26 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) |
| 28 | 19, 13, 19, 15, 21, 21, 24, 27 | lemul12ad 9014 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦)) |
| 29 | 18, 28 | eqbrtrrid 4079 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦)) |
| 30 | 16 | ltpnfd 9902 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞) |
| 31 | 10, 11, 17, 29, 30 | elicod 10405 | . . . 4 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
| 32 | 31 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
| 33 | fprodge1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 34 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℝ*) |
| 35 | 2 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → +∞ ∈ ℝ*) |
| 36 | fprodge1.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 37 | 36 | rexrd 8121 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 38 | fprodge1.ge | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) | |
| 39 | 36 | ltpnfd 9902 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < +∞) |
| 40 | 34, 35, 37, 38, 39 | elicod 10405 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (1[,)+∞)) |
| 41 | 1le1 8644 | . . . . 5 ⊢ 1 ≤ 1 | |
| 42 | ltpnf 9901 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 43 | 4, 42 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 44 | elico2 10058 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))) | |
| 45 | 4, 2, 44 | mp2an 426 | . . . . 5 ⊢ (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)) |
| 46 | 4, 41, 43, 45 | mpbir3an 1181 | . . . 4 ⊢ 1 ∈ (1[,)+∞) |
| 47 | 46 | a1i 9 | . . 3 ⊢ (𝜑 → 1 ∈ (1[,)+∞)) |
| 48 | 3, 9, 32, 33, 40, 47 | fprodcllemf 11866 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) |
| 49 | icogelb 10406 | . 2 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
| 50 | 1, 2, 48, 49 | mp3an12i 1353 | 1 ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 Ⅎwnf 1482 ∈ wcel 2175 ⊆ wss 3165 class class class wbr 4043 (class class class)co 5943 Fincfn 6826 ℂcc 7922 ℝcr 7923 0cc0 7924 1c1 7925 · cmul 7929 +∞cpnf 8103 ℝ*cxr 8105 < clt 8106 ≤ cle 8107 [,)cico 10011 ∏cprod 11803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-proddc 11804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |