| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodge0 | GIF version | ||
| Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodge0.kph | ⊢ Ⅎ𝑘𝜑 |
| fprodge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fprodge0.0leb | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fprodge0 | ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8181 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfxr 8187 | . 2 ⊢ +∞ ∈ ℝ* | |
| 3 | fprodge0.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 4 | rge0ssre 10161 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 5 | ax-resscn 8079 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 6 | 4, 5 | sstri 3233 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
| 8 | ge0mulcl 10166 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞)) | |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞)) |
| 10 | fprodge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 11 | fprodge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 12 | fprodge0.0leb | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 13 | elrege0 10160 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 14 | 11, 12, 13 | sylanbrc 417 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 15 | 1re 8133 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 16 | 0le1 8616 | . . . . 5 ⊢ 0 ≤ 1 | |
| 17 | ltpnf 9964 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 18 | 15, 17 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 19 | 0re 8134 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 20 | elico2 10121 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))) | |
| 21 | 19, 2, 20 | mp2an 426 | . . . . 5 ⊢ (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)) |
| 22 | 15, 16, 18, 21 | mpbir3an 1203 | . . . 4 ⊢ 1 ∈ (0[,)+∞) |
| 23 | 22 | a1i 9 | . . 3 ⊢ (𝜑 → 1 ∈ (0[,)+∞)) |
| 24 | 3, 7, 9, 10, 14, 23 | fprodcllemf 12110 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
| 25 | icogelb 10472 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
| 26 | 1, 2, 24, 25 | mp3an12i 1375 | 1 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 Ⅎwnf 1506 ∈ wcel 2200 ⊆ wss 3197 class class class wbr 4082 (class class class)co 5994 Fincfn 6877 ℂcc 7985 ℝcr 7986 0cc0 7987 1c1 7988 · cmul 7992 +∞cpnf 8166 ℝ*cxr 8168 < clt 8169 ≤ cle 8170 [,)cico 10074 ∏cprod 12047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-ico 10078 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-proddc 12048 |
| This theorem is referenced by: fprodle 12137 |
| Copyright terms: Public domain | W3C validator |