ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodge0 GIF version

Theorem fprodge0 11998
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge0.kph 𝑘𝜑
fprodge0.a (𝜑𝐴 ∈ Fin)
fprodge0.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge0.0leb ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
fprodge0 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8132 . 2 0 ∈ ℝ*
2 pnfxr 8138 . 2 +∞ ∈ ℝ*
3 fprodge0.kph . . 3 𝑘𝜑
4 rge0ssre 10112 . . . . 5 (0[,)+∞) ⊆ ℝ
5 ax-resscn 8030 . . . . 5 ℝ ⊆ ℂ
64, 5sstri 3204 . . . 4 (0[,)+∞) ⊆ ℂ
76a1i 9 . . 3 (𝜑 → (0[,)+∞) ⊆ ℂ)
8 ge0mulcl 10117 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
98adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
10 fprodge0.a . . 3 (𝜑𝐴 ∈ Fin)
11 fprodge0.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
12 fprodge0.0leb . . . 4 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
13 elrege0 10111 . . . 4 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1411, 12, 13sylanbrc 417 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
15 1re 8084 . . . . 5 1 ∈ ℝ
16 0le1 8567 . . . . 5 0 ≤ 1
17 ltpnf 9915 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
1815, 17ax-mp 5 . . . . 5 1 < +∞
19 0re 8085 . . . . . 6 0 ∈ ℝ
20 elico2 10072 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
2119, 2, 20mp2an 426 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
2215, 16, 18, 21mpbir3an 1182 . . . 4 1 ∈ (0[,)+∞)
2322a1i 9 . . 3 (𝜑 → 1 ∈ (0[,)+∞))
243, 7, 9, 10, 14, 23fprodcllemf 11974 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (0[,)+∞))
25 icogelb 10421 . 2 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘𝐴 𝐵)
261, 2, 24, 25mp3an12i 1354 1 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wnf 1484  wcel 2177  wss 3168   class class class wbr 4048  (class class class)co 5954  Fincfn 6837  cc 7936  cr 7937  0cc0 7938  1c1 7939   · cmul 7943  +∞cpnf 8117  *cxr 8119   < clt 8120  cle 8121  [,)cico 10025  cprod 11911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-ico 10029  df-fz 10144  df-fzo 10278  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-proddc 11912
This theorem is referenced by:  fprodle  12001
  Copyright terms: Public domain W3C validator