ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin02gt0 GIF version

Theorem sin02gt0 11497
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 7832 . . . . . . 7 0 ∈ ℝ*
2 2re 8810 . . . . . . 7 2 ∈ ℝ
3 elioc2 9745 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2)))
41, 2, 3mp2an 423 . . . . . 6 (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2))
5 rehalfcl 8967 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
653ad2ant1 1003 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ∈ ℝ)
74, 6sylbi 120 . . . . 5 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℝ)
8 resincl 11454 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
9 recoscl 11455 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
108, 9remulcld 7816 . . . . 5 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
117, 10syl 14 . . . 4 (𝐴 ∈ (0(,]2) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
12 2pos 8831 . . . . . . . . . 10 0 < 2
13 divgt0 8650 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝐴 / 2))
142, 12, 13mpanr12 436 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
15143adant3 1002 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → 0 < (𝐴 / 2))
162, 12pm3.2i 270 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
17 lediv1 8647 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
182, 16, 17mp3an23 1308 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
1918biimpa 294 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ (2 / 2))
20 2div2e1 8872 . . . . . . . . . 10 (2 / 2) = 1
2119, 20breqtrdi 3973 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
22213adant2 1001 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
236, 15, 223jca 1162 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
24 1re 7785 . . . . . . . 8 1 ∈ ℝ
25 elioc2 9745 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
261, 24, 25mp2an 423 . . . . . . 7 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
2723, 4, 263imtr4i 200 . . . . . 6 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ (0(,]1))
28 sin01gt0 11495 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (sin‘(𝐴 / 2)))
2927, 28syl 14 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (sin‘(𝐴 / 2)))
30 cos01gt0 11496 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
3127, 30syl 14 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (cos‘(𝐴 / 2)))
32 axmulgt0 7856 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
338, 9, 32syl2anc 409 . . . . . 6 ((𝐴 / 2) ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
347, 33syl 14 . . . . 5 (𝐴 ∈ (0(,]2) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
3529, 31, 34mp2and 430 . . . 4 (𝐴 ∈ (0(,]2) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))
36 axmulgt0 7856 . . . . . 6 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
372, 36mpan 421 . . . . 5 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3812, 37mpani 427 . . . 4 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3911, 35, 38sylc 62 . . 3 (𝐴 ∈ (0(,]2) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
407recnd 7814 . . . 4 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℂ)
41 sin2t 11483 . . . 4 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4240, 41syl 14 . . 3 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4339, 42breqtrrd 3960 . 2 (𝐴 ∈ (0(,]2) → 0 < (sin‘(2 · (𝐴 / 2))))
444simp1bi 997 . . . . 5 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℝ)
4544recnd 7814 . . . 4 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℂ)
46 2cn 8811 . . . . 5 2 ∈ ℂ
47 2ap0 8833 . . . . 5 2 # 0
48 divcanap2 8460 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (2 · (𝐴 / 2)) = 𝐴)
4946, 47, 48mp3an23 1308 . . . 4 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
5045, 49syl 14 . . 3 (𝐴 ∈ (0(,]2) → (2 · (𝐴 / 2)) = 𝐴)
5150fveq2d 5429 . 2 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
5243, 51breqtrd 3958 1 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3933  cfv 5127  (class class class)co 5778  cc 7638  cr 7639  0cc0 7640  1c1 7641   · cmul 7645  *cxr 7819   < clt 7820  cle 7821   # cap 8363   / cdiv 8452  2c2 8791  (,]cioc 9698  sincsin 11378  cosccos 11379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759  ax-caucvg 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-disj 3911  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-isom 5136  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-irdg 6271  df-frec 6292  df-1o 6317  df-oadd 6321  df-er 6433  df-en 6639  df-dom 6640  df-fin 6641  df-sup 6875  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-5 8802  df-6 8803  df-7 8804  df-8 8805  df-n0 8998  df-z 9075  df-uz 9347  df-q 9435  df-rp 9467  df-ioc 9702  df-ico 9703  df-fz 9818  df-fzo 9947  df-seqfrec 10246  df-exp 10320  df-fac 10500  df-bc 10522  df-ihash 10550  df-shft 10615  df-cj 10642  df-re 10643  df-im 10644  df-rsqrt 10798  df-abs 10799  df-clim 11076  df-sumdc 11151  df-ef 11382  df-sin 11384  df-cos 11385
This theorem is referenced by:  sincos2sgn  11499  cos12dec  11501  sin0pilem1  12901  sin0pilem2  12902  sinhalfpilem  12911  sincosq1lem  12945
  Copyright terms: Public domain W3C validator