Proof of Theorem sin02gt0
Step | Hyp | Ref
| Expression |
1 | | 0xr 7966 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
2 | | 2re 8948 |
. . . . . . 7
⊢ 2 ∈
ℝ |
3 | | elioc2 9893 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2))) |
4 | 1, 2, 3 | mp2an 424 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2)) |
5 | | rehalfcl 9105 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈
ℝ) |
6 | 5 | 3ad2ant1 1013 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → (𝐴 / 2) ∈ ℝ) |
7 | 4, 6 | sylbi 120 |
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈
ℝ) |
8 | | resincl 11683 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℝ →
(sin‘(𝐴 / 2)) ∈
ℝ) |
9 | | recoscl 11684 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℝ →
(cos‘(𝐴 / 2)) ∈
ℝ) |
10 | 8, 9 | remulcld 7950 |
. . . . 5
⊢ ((𝐴 / 2) ∈ ℝ →
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))) ∈ ℝ) |
11 | 7, 10 | syl 14 |
. . . 4
⊢ (𝐴 ∈ (0(,]2) →
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))) ∈ ℝ) |
12 | | 2pos 8969 |
. . . . . . . . . 10
⊢ 0 <
2 |
13 | | divgt0 8788 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (2 ∈ ℝ
∧ 0 < 2)) → 0 < (𝐴 / 2)) |
14 | 2, 12, 13 | mpanr12 437 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (𝐴 / 2)) |
15 | 14 | 3adant3 1012 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → 0 < (𝐴 / 2)) |
16 | 2, 12 | pm3.2i 270 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℝ ∧ 0 < 2) |
17 | | lediv1 8785 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈
ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2))) |
18 | 2, 16, 17 | mp3an23 1324 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 /
2))) |
19 | 18 | biimpa 294 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ (2 /
2)) |
20 | | 2div2e1 9010 |
. . . . . . . . . 10
⊢ (2 / 2) =
1 |
21 | 19, 20 | breqtrdi 4030 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1) |
22 | 21 | 3adant2 1011 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1) |
23 | 6, 15, 22 | 3jca 1172 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)) |
24 | | 1re 7919 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
25 | | elioc2 9893 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0
< (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))) |
26 | 1, 24, 25 | mp2an 424 |
. . . . . . 7
⊢ ((𝐴 / 2) ∈ (0(,]1) ↔
((𝐴 / 2) ∈ ℝ
∧ 0 < (𝐴 / 2) ∧
(𝐴 / 2) ≤
1)) |
27 | 23, 4, 26 | 3imtr4i 200 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈
(0(,]1)) |
28 | | sin01gt0 11724 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ (0(,]1) → 0
< (sin‘(𝐴 /
2))) |
29 | 27, 28 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → 0 <
(sin‘(𝐴 /
2))) |
30 | | cos01gt0 11725 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ (0(,]1) → 0
< (cos‘(𝐴 /
2))) |
31 | 27, 30 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → 0 <
(cos‘(𝐴 /
2))) |
32 | | axmulgt0 7991 |
. . . . . . 7
⊢
(((sin‘(𝐴 /
2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
33 | 8, 9, 32 | syl2anc 409 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℝ → ((0
< (sin‘(𝐴 / 2))
∧ 0 < (cos‘(𝐴
/ 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
34 | 7, 33 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
35 | 29, 31, 34 | mp2and 431 |
. . . 4
⊢ (𝐴 ∈ (0(,]2) → 0 <
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2)))) |
36 | | axmulgt0 7991 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) →
((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2)))))) |
37 | 2, 36 | mpan 422 |
. . . . 5
⊢
(((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2))) ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) ·
(cos‘(𝐴 / 2))))
→ 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))) |
38 | 12, 37 | mpani 428 |
. . . 4
⊢
(((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2))) ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2)))))) |
39 | 11, 35, 38 | sylc 62 |
. . 3
⊢ (𝐴 ∈ (0(,]2) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2))))) |
40 | 7 | recnd 7948 |
. . . 4
⊢ (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈
ℂ) |
41 | | sin2t 11712 |
. . . 4
⊢ ((𝐴 / 2) ∈ ℂ →
(sin‘(2 · (𝐴 /
2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
42 | 40, 41 | syl 14 |
. . 3
⊢ (𝐴 ∈ (0(,]2) →
(sin‘(2 · (𝐴 /
2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
43 | 39, 42 | breqtrrd 4017 |
. 2
⊢ (𝐴 ∈ (0(,]2) → 0 <
(sin‘(2 · (𝐴 /
2)))) |
44 | 4 | simp1bi 1007 |
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → 𝐴 ∈
ℝ) |
45 | 44 | recnd 7948 |
. . . 4
⊢ (𝐴 ∈ (0(,]2) → 𝐴 ∈
ℂ) |
46 | | 2cn 8949 |
. . . . 5
⊢ 2 ∈
ℂ |
47 | | 2ap0 8971 |
. . . . 5
⊢ 2 #
0 |
48 | | divcanap2 8597 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 # 0) → (2 · (𝐴 / 2)) = 𝐴) |
49 | 46, 47, 48 | mp3an23 1324 |
. . . 4
⊢ (𝐴 ∈ ℂ → (2
· (𝐴 / 2)) = 𝐴) |
50 | 45, 49 | syl 14 |
. . 3
⊢ (𝐴 ∈ (0(,]2) → (2
· (𝐴 / 2)) = 𝐴) |
51 | 50 | fveq2d 5500 |
. 2
⊢ (𝐴 ∈ (0(,]2) →
(sin‘(2 · (𝐴 /
2))) = (sin‘𝐴)) |
52 | 43, 51 | breqtrd 4015 |
1
⊢ (𝐴 ∈ (0(,]2) → 0 <
(sin‘𝐴)) |