Proof of Theorem sin02gt0
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0xr 8073 | 
. . . . . . 7
⊢ 0 ∈
ℝ* | 
| 2 |   | 2re 9060 | 
. . . . . . 7
⊢ 2 ∈
ℝ | 
| 3 |   | elioc2 10011 | 
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2))) | 
| 4 | 1, 2, 3 | mp2an 426 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2)) | 
| 5 |   | rehalfcl 9218 | 
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈
ℝ) | 
| 6 | 5 | 3ad2ant1 1020 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → (𝐴 / 2) ∈ ℝ) | 
| 7 | 4, 6 | sylbi 121 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈
ℝ) | 
| 8 |   | resincl 11885 | 
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℝ →
(sin‘(𝐴 / 2)) ∈
ℝ) | 
| 9 |   | recoscl 11886 | 
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℝ →
(cos‘(𝐴 / 2)) ∈
ℝ) | 
| 10 | 8, 9 | remulcld 8057 | 
. . . . 5
⊢ ((𝐴 / 2) ∈ ℝ →
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))) ∈ ℝ) | 
| 11 | 7, 10 | syl 14 | 
. . . 4
⊢ (𝐴 ∈ (0(,]2) →
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))) ∈ ℝ) | 
| 12 |   | 2pos 9081 | 
. . . . . . . . . 10
⊢ 0 <
2 | 
| 13 |   | divgt0 8899 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (2 ∈ ℝ
∧ 0 < 2)) → 0 < (𝐴 / 2)) | 
| 14 | 2, 12, 13 | mpanr12 439 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (𝐴 / 2)) | 
| 15 | 14 | 3adant3 1019 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → 0 < (𝐴 / 2)) | 
| 16 | 2, 12 | pm3.2i 272 | 
. . . . . . . . . . . 12
⊢ (2 ∈
ℝ ∧ 0 < 2) | 
| 17 |   | lediv1 8896 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈
ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2))) | 
| 18 | 2, 16, 17 | mp3an23 1340 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 /
2))) | 
| 19 | 18 | biimpa 296 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ (2 /
2)) | 
| 20 |   | 2div2e1 9123 | 
. . . . . . . . . 10
⊢ (2 / 2) =
1 | 
| 21 | 19, 20 | breqtrdi 4074 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1) | 
| 22 | 21 | 3adant2 1018 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1) | 
| 23 | 6, 15, 22 | 3jca 1179 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 2) → ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)) | 
| 24 |   | 1re 8025 | 
. . . . . . . 8
⊢ 1 ∈
ℝ | 
| 25 |   | elioc2 10011 | 
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0
< (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))) | 
| 26 | 1, 24, 25 | mp2an 426 | 
. . . . . . 7
⊢ ((𝐴 / 2) ∈ (0(,]1) ↔
((𝐴 / 2) ∈ ℝ
∧ 0 < (𝐴 / 2) ∧
(𝐴 / 2) ≤
1)) | 
| 27 | 23, 4, 26 | 3imtr4i 201 | 
. . . . . 6
⊢ (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈
(0(,]1)) | 
| 28 |   | sin01gt0 11927 | 
. . . . . 6
⊢ ((𝐴 / 2) ∈ (0(,]1) → 0
< (sin‘(𝐴 /
2))) | 
| 29 | 27, 28 | syl 14 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → 0 <
(sin‘(𝐴 /
2))) | 
| 30 |   | cos01gt0 11928 | 
. . . . . 6
⊢ ((𝐴 / 2) ∈ (0(,]1) → 0
< (cos‘(𝐴 /
2))) | 
| 31 | 27, 30 | syl 14 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → 0 <
(cos‘(𝐴 /
2))) | 
| 32 |   | axmulgt0 8098 | 
. . . . . . 7
⊢
(((sin‘(𝐴 /
2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) | 
| 33 | 8, 9, 32 | syl2anc 411 | 
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℝ → ((0
< (sin‘(𝐴 / 2))
∧ 0 < (cos‘(𝐴
/ 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) | 
| 34 | 7, 33 | syl 14 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) | 
| 35 | 29, 31, 34 | mp2and 433 | 
. . . 4
⊢ (𝐴 ∈ (0(,]2) → 0 <
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2)))) | 
| 36 |   | axmulgt0 8098 | 
. . . . . 6
⊢ ((2
∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) →
((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2)))))) | 
| 37 | 2, 36 | mpan 424 | 
. . . . 5
⊢
(((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2))) ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) ·
(cos‘(𝐴 / 2))))
→ 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))) | 
| 38 | 12, 37 | mpani 430 | 
. . . 4
⊢
(((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2))) ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2)))))) | 
| 39 | 11, 35, 38 | sylc 62 | 
. . 3
⊢ (𝐴 ∈ (0(,]2) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2))))) | 
| 40 | 7 | recnd 8055 | 
. . . 4
⊢ (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈
ℂ) | 
| 41 |   | sin2t 11914 | 
. . . 4
⊢ ((𝐴 / 2) ∈ ℂ →
(sin‘(2 · (𝐴 /
2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) | 
| 42 | 40, 41 | syl 14 | 
. . 3
⊢ (𝐴 ∈ (0(,]2) →
(sin‘(2 · (𝐴 /
2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) | 
| 43 | 39, 42 | breqtrrd 4061 | 
. 2
⊢ (𝐴 ∈ (0(,]2) → 0 <
(sin‘(2 · (𝐴 /
2)))) | 
| 44 | 4 | simp1bi 1014 | 
. . . . 5
⊢ (𝐴 ∈ (0(,]2) → 𝐴 ∈
ℝ) | 
| 45 | 44 | recnd 8055 | 
. . . 4
⊢ (𝐴 ∈ (0(,]2) → 𝐴 ∈
ℂ) | 
| 46 |   | 2cn 9061 | 
. . . . 5
⊢ 2 ∈
ℂ | 
| 47 |   | 2ap0 9083 | 
. . . . 5
⊢ 2 #
0 | 
| 48 |   | divcanap2 8707 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 # 0) → (2 · (𝐴 / 2)) = 𝐴) | 
| 49 | 46, 47, 48 | mp3an23 1340 | 
. . . 4
⊢ (𝐴 ∈ ℂ → (2
· (𝐴 / 2)) = 𝐴) | 
| 50 | 45, 49 | syl 14 | 
. . 3
⊢ (𝐴 ∈ (0(,]2) → (2
· (𝐴 / 2)) = 𝐴) | 
| 51 | 50 | fveq2d 5562 | 
. 2
⊢ (𝐴 ∈ (0(,]2) →
(sin‘(2 · (𝐴 /
2))) = (sin‘𝐴)) | 
| 52 | 43, 51 | breqtrd 4059 | 
1
⊢ (𝐴 ∈ (0(,]2) → 0 <
(sin‘𝐴)) |