| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeff1olem | GIF version | ||
| Description: Lemma for reeff1o 15093. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| reeff1olem | ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc 10051 | . . 3 ⊢ (0(,)𝑈) ⊆ (0[,]𝑈) | |
| 2 | 0re 8043 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | iccssre 10047 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ) | |
| 4 | 2, 3 | mpan 424 | . . . 4 ⊢ (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ) |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ) |
| 6 | 1, 5 | sstrid 3195 | . 2 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ) |
| 7 | 2 | a1i 9 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ) |
| 8 | simpl 109 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ) | |
| 9 | 0lt1 8170 | . . . . 5 ⊢ 0 < 1 | |
| 10 | 1re 8042 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 11 | lttr 8117 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈)) | |
| 12 | 2, 10, 11 | mp3an12 1338 | . . . . 5 ⊢ (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈)) |
| 13 | 9, 12 | mpani 430 | . . . 4 ⊢ (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈)) |
| 14 | 13 | imp 124 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈) |
| 15 | ax-resscn 7988 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 16 | 5, 15 | sstrdi 3196 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ) |
| 17 | efcn 15088 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
| 18 | 17 | a1i 9 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ)) |
| 19 | ssel2 3179 | . . . . 5 ⊢ (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ) | |
| 20 | 19 | reefcld 11851 | . . . 4 ⊢ (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ) |
| 21 | 5, 20 | sylan 283 | . . 3 ⊢ (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ) |
| 22 | ef0 11854 | . . . . 5 ⊢ (exp‘0) = 1 | |
| 23 | simpr 110 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈) | |
| 24 | 22, 23 | eqbrtrid 4069 | . . . 4 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈) |
| 25 | peano2re 8179 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ) | |
| 26 | 25 | adantr 276 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ) |
| 27 | reefcl 11850 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ) | |
| 28 | 27 | adantr 276 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ) |
| 29 | ltp1 8888 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1)) | |
| 30 | 29 | adantr 276 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1)) |
| 31 | 8 | recnd 8072 | . . . . . . 7 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ) |
| 32 | ax-1cn 7989 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 33 | addcom 8180 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈)) | |
| 34 | 31, 32, 33 | sylancl 413 | . . . . . 6 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈)) |
| 35 | 8, 14 | elrpd 9785 | . . . . . . 7 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+) |
| 36 | efgt1p 11878 | . . . . . . 7 ⊢ (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈)) | |
| 37 | 35, 36 | syl 14 | . . . . . 6 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈)) |
| 38 | 34, 37 | eqbrtrd 4056 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈)) |
| 39 | 8, 26, 28, 30, 38 | lttrd 8169 | . . . 4 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈)) |
| 40 | 24, 39 | jca 306 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈 ∧ 𝑈 < (exp‘𝑈))) |
| 41 | simplll 533 | . . . . . . 7 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑈 ∈ ℝ) | |
| 42 | 2, 41, 3 | sylancr 414 | . . . . . 6 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (0[,]𝑈) ⊆ ℝ) |
| 43 | simplr 528 | . . . . . 6 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ (0[,]𝑈)) | |
| 44 | 42, 43 | sseldd 3185 | . . . . 5 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ ℝ) |
| 45 | simprl 529 | . . . . . 6 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ (0[,]𝑈)) | |
| 46 | 42, 45 | sseldd 3185 | . . . . 5 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ ℝ) |
| 47 | 44, 46 | jca 306 | . . . 4 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) |
| 48 | simprr 531 | . . . 4 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 < 𝑧) | |
| 49 | efltim 11880 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 → (exp‘𝑦) < (exp‘𝑧))) | |
| 50 | 47, 48, 49 | sylc 62 | . . 3 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (exp‘𝑦) < (exp‘𝑧)) |
| 51 | 7, 8, 8, 14, 16, 18, 21, 40, 50 | ivthinc 14963 | . 2 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈) |
| 52 | ssrexv 3249 | . 2 ⊢ ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)) | |
| 53 | 6, 51, 52 | sylc 62 | 1 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ⊆ wss 3157 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 ℝcr 7895 0cc0 7896 1c1 7897 + caddc 7899 < clt 8078 ℝ+crp 9745 (,)cioo 9980 [,]cicc 9983 expce 11824 –cn→ccncf 14890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-pre-suploc 8017 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-ioo 9984 df-ico 9986 df-icc 9987 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-fac 10835 df-bc 10857 df-ihash 10885 df-shft 10997 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 df-ef 11830 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 df-limced 14976 df-dvap 14977 |
| This theorem is referenced by: reeff1oleme 15092 reeff1o 15093 |
| Copyright terms: Public domain | W3C validator |