ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem GIF version

Theorem reeff1olem 15243
Description: Lemma for reeff1o 15245. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Distinct variable group:   𝑥,𝑈

Proof of Theorem reeff1olem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 10081 . . 3 (0(,)𝑈) ⊆ (0[,]𝑈)
2 0re 8072 . . . . 5 0 ∈ ℝ
3 iccssre 10077 . . . . 5 ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ)
42, 3mpan 424 . . . 4 (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ)
54adantr 276 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ)
61, 5sstrid 3204 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ)
72a1i 9 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ)
8 simpl 109 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ)
9 0lt1 8199 . . . . 5 0 < 1
10 1re 8071 . . . . . 6 1 ∈ ℝ
11 lttr 8146 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
122, 10, 11mp3an12 1340 . . . . 5 (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
139, 12mpani 430 . . . 4 (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈))
1413imp 124 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈)
15 ax-resscn 8017 . . . 4 ℝ ⊆ ℂ
165, 15sstrdi 3205 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ)
17 efcn 15240 . . . 4 exp ∈ (ℂ–cn→ℂ)
1817a1i 9 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ))
19 ssel2 3188 . . . . 5 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ)
2019reefcld 11980 . . . 4 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
215, 20sylan 283 . . 3 (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
22 ef0 11983 . . . . 5 (exp‘0) = 1
23 simpr 110 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈)
2422, 23eqbrtrid 4079 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈)
25 peano2re 8208 . . . . . 6 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
2625adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ)
27 reefcl 11979 . . . . . 6 (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ)
2827adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ)
29 ltp1 8917 . . . . . 6 (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1))
3029adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1))
318recnd 8101 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ)
32 ax-1cn 8018 . . . . . . 7 1 ∈ ℂ
33 addcom 8209 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈))
3431, 32, 33sylancl 413 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈))
358, 14elrpd 9815 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+)
36 efgt1p 12007 . . . . . . 7 (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈))
3735, 36syl 14 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈))
3834, 37eqbrtrd 4066 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈))
398, 26, 28, 30, 38lttrd 8198 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈))
4024, 39jca 306 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈𝑈 < (exp‘𝑈)))
41 simplll 533 . . . . . . 7 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑈 ∈ ℝ)
422, 41, 3sylancr 414 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (0[,]𝑈) ⊆ ℝ)
43 simplr 528 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ (0[,]𝑈))
4442, 43sseldd 3194 . . . . 5 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ ℝ)
45 simprl 529 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ (0[,]𝑈))
4642, 45sseldd 3194 . . . . 5 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ ℝ)
4744, 46jca 306 . . . 4 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
48 simprr 531 . . . 4 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 < 𝑧)
49 efltim 12009 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 → (exp‘𝑦) < (exp‘𝑧)))
5047, 48, 49sylc 62 . . 3 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (exp‘𝑦) < (exp‘𝑧))
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 15115 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈)
52 ssrexv 3258 . 2 ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈))
536, 51, 52sylc 62 1 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wrex 2485  wss 3166   class class class wbr 4044  cfv 5271  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   < clt 8107  +crp 9775  (,)cioo 10010  [,]cicc 10013  expce 11953  cnccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ioo 10014  df-ico 10016  df-icc 10017  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by:  reeff1oleme  15244  reeff1o  15245
  Copyright terms: Public domain W3C validator