![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reeff1olem | GIF version |
Description: Lemma for reeff1o 14949. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
reeff1olem | ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossicc 10028 | . . 3 ⊢ (0(,)𝑈) ⊆ (0[,]𝑈) | |
2 | 0re 8021 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | iccssre 10024 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ) | |
4 | 2, 3 | mpan 424 | . . . 4 ⊢ (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ) |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ) |
6 | 1, 5 | sstrid 3191 | . 2 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ) |
7 | 2 | a1i 9 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ) |
8 | simpl 109 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ) | |
9 | 0lt1 8148 | . . . . 5 ⊢ 0 < 1 | |
10 | 1re 8020 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | lttr 8095 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈)) | |
12 | 2, 10, 11 | mp3an12 1338 | . . . . 5 ⊢ (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈)) |
13 | 9, 12 | mpani 430 | . . . 4 ⊢ (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈)) |
14 | 13 | imp 124 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈) |
15 | ax-resscn 7966 | . . . 4 ⊢ ℝ ⊆ ℂ | |
16 | 5, 15 | sstrdi 3192 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ) |
17 | efcn 14944 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
18 | 17 | a1i 9 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ)) |
19 | ssel2 3175 | . . . . 5 ⊢ (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ) | |
20 | 19 | reefcld 11815 | . . . 4 ⊢ (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ) |
21 | 5, 20 | sylan 283 | . . 3 ⊢ (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ) |
22 | ef0 11818 | . . . . 5 ⊢ (exp‘0) = 1 | |
23 | simpr 110 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈) | |
24 | 22, 23 | eqbrtrid 4065 | . . . 4 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈) |
25 | peano2re 8157 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ) | |
26 | 25 | adantr 276 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ) |
27 | reefcl 11814 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ) | |
28 | 27 | adantr 276 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ) |
29 | ltp1 8865 | . . . . . 6 ⊢ (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1)) | |
30 | 29 | adantr 276 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1)) |
31 | 8 | recnd 8050 | . . . . . . 7 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ) |
32 | ax-1cn 7967 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
33 | addcom 8158 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈)) | |
34 | 31, 32, 33 | sylancl 413 | . . . . . 6 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈)) |
35 | 8, 14 | elrpd 9762 | . . . . . . 7 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+) |
36 | efgt1p 11842 | . . . . . . 7 ⊢ (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈)) | |
37 | 35, 36 | syl 14 | . . . . . 6 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈)) |
38 | 34, 37 | eqbrtrd 4052 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈)) |
39 | 8, 26, 28, 30, 38 | lttrd 8147 | . . . 4 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈)) |
40 | 24, 39 | jca 306 | . . 3 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈 ∧ 𝑈 < (exp‘𝑈))) |
41 | simplll 533 | . . . . . . 7 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑈 ∈ ℝ) | |
42 | 2, 41, 3 | sylancr 414 | . . . . . 6 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (0[,]𝑈) ⊆ ℝ) |
43 | simplr 528 | . . . . . 6 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ (0[,]𝑈)) | |
44 | 42, 43 | sseldd 3181 | . . . . 5 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ ℝ) |
45 | simprl 529 | . . . . . 6 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ (0[,]𝑈)) | |
46 | 42, 45 | sseldd 3181 | . . . . 5 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ ℝ) |
47 | 44, 46 | jca 306 | . . . 4 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) |
48 | simprr 531 | . . . 4 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 < 𝑧) | |
49 | efltim 11844 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 → (exp‘𝑦) < (exp‘𝑧))) | |
50 | 47, 48, 49 | sylc 62 | . . 3 ⊢ ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (exp‘𝑦) < (exp‘𝑧)) |
51 | 7, 8, 8, 14, 16, 18, 21, 40, 50 | ivthinc 14822 | . 2 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈) |
52 | ssrexv 3245 | . 2 ⊢ ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)) | |
53 | 6, 51, 52 | sylc 62 | 1 ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3154 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 < clt 8056 ℝ+crp 9722 (,)cioo 9957 [,]cicc 9960 expce 11788 –cn→ccncf 14749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-pre-suploc 7995 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-disj 4008 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-ico 9963 df-icc 9964 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 |
This theorem is referenced by: reeff1oleme 14948 reeff1o 14949 |
Copyright terms: Public domain | W3C validator |