ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem GIF version

Theorem reeff1olem 15328
Description: Lemma for reeff1o 15330. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Distinct variable group:   𝑥,𝑈

Proof of Theorem reeff1olem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 10111 . . 3 (0(,)𝑈) ⊆ (0[,]𝑈)
2 0re 8102 . . . . 5 0 ∈ ℝ
3 iccssre 10107 . . . . 5 ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ)
42, 3mpan 424 . . . 4 (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ)
54adantr 276 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ)
61, 5sstrid 3208 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ)
72a1i 9 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ)
8 simpl 109 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ)
9 0lt1 8229 . . . . 5 0 < 1
10 1re 8101 . . . . . 6 1 ∈ ℝ
11 lttr 8176 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
122, 10, 11mp3an12 1340 . . . . 5 (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
139, 12mpani 430 . . . 4 (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈))
1413imp 124 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈)
15 ax-resscn 8047 . . . 4 ℝ ⊆ ℂ
165, 15sstrdi 3209 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ)
17 efcn 15325 . . . 4 exp ∈ (ℂ–cn→ℂ)
1817a1i 9 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ))
19 ssel2 3192 . . . . 5 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ)
2019reefcld 12065 . . . 4 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
215, 20sylan 283 . . 3 (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
22 ef0 12068 . . . . 5 (exp‘0) = 1
23 simpr 110 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈)
2422, 23eqbrtrid 4089 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈)
25 peano2re 8238 . . . . . 6 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
2625adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ)
27 reefcl 12064 . . . . . 6 (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ)
2827adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ)
29 ltp1 8947 . . . . . 6 (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1))
3029adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1))
318recnd 8131 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ)
32 ax-1cn 8048 . . . . . . 7 1 ∈ ℂ
33 addcom 8239 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈))
3431, 32, 33sylancl 413 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈))
358, 14elrpd 9845 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+)
36 efgt1p 12092 . . . . . . 7 (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈))
3735, 36syl 14 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈))
3834, 37eqbrtrd 4076 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈))
398, 26, 28, 30, 38lttrd 8228 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈))
4024, 39jca 306 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈𝑈 < (exp‘𝑈)))
41 simplll 533 . . . . . . 7 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑈 ∈ ℝ)
422, 41, 3sylancr 414 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (0[,]𝑈) ⊆ ℝ)
43 simplr 528 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ (0[,]𝑈))
4442, 43sseldd 3198 . . . . 5 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ ℝ)
45 simprl 529 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ (0[,]𝑈))
4642, 45sseldd 3198 . . . . 5 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ ℝ)
4744, 46jca 306 . . . 4 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
48 simprr 531 . . . 4 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 < 𝑧)
49 efltim 12094 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 → (exp‘𝑦) < (exp‘𝑧)))
5047, 48, 49sylc 62 . . 3 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (exp‘𝑦) < (exp‘𝑧))
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 15200 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈)
52 ssrexv 3262 . 2 ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈))
536, 51, 52sylc 62 1 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  wss 3170   class class class wbr 4054  cfv 5285  (class class class)co 5962  cc 7953  cr 7954  0cc0 7955  1c1 7956   + caddc 7958   < clt 8137  +crp 9805  (,)cioo 10040  [,]cicc 10043  expce 12038  cnccncf 15127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075  ax-pre-suploc 8076  ax-addf 8077  ax-mulf 8078
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-disj 4031  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-of 6176  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-frec 6495  df-1o 6520  df-oadd 6524  df-er 6638  df-map 6755  df-pm 6756  df-en 6846  df-dom 6847  df-fin 6848  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-xneg 9924  df-xadd 9925  df-ioo 10044  df-ico 10046  df-icc 10047  df-fz 10161  df-fzo 10295  df-seqfrec 10625  df-exp 10716  df-fac 10903  df-bc 10925  df-ihash 10953  df-shft 11211  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-clim 11675  df-sumdc 11750  df-ef 12044  df-rest 13158  df-topgen 13177  df-psmet 14390  df-xmet 14391  df-met 14392  df-bl 14393  df-mopn 14394  df-top 14555  df-topon 14568  df-bases 14600  df-ntr 14653  df-cn 14745  df-cnp 14746  df-tx 14810  df-cncf 15128  df-limced 15213  df-dvap 15214
This theorem is referenced by:  reeff1oleme  15329  reeff1o  15330
  Copyright terms: Public domain W3C validator