ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem GIF version

Theorem reeff1olem 15439
Description: Lemma for reeff1o 15441. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Distinct variable group:   𝑥,𝑈

Proof of Theorem reeff1olem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 10151 . . 3 (0(,)𝑈) ⊆ (0[,]𝑈)
2 0re 8142 . . . . 5 0 ∈ ℝ
3 iccssre 10147 . . . . 5 ((0 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (0[,]𝑈) ⊆ ℝ)
42, 3mpan 424 . . . 4 (𝑈 ∈ ℝ → (0[,]𝑈) ⊆ ℝ)
54adantr 276 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℝ)
61, 5sstrid 3235 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0(,)𝑈) ⊆ ℝ)
72a1i 9 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 ∈ ℝ)
8 simpl 109 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ)
9 0lt1 8269 . . . . 5 0 < 1
10 1re 8141 . . . . . 6 1 ∈ ℝ
11 lttr 8216 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
122, 10, 11mp3an12 1361 . . . . 5 (𝑈 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑈) → 0 < 𝑈))
139, 12mpani 430 . . . 4 (𝑈 ∈ ℝ → (1 < 𝑈 → 0 < 𝑈))
1413imp 124 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 0 < 𝑈)
15 ax-resscn 8087 . . . 4 ℝ ⊆ ℂ
165, 15sstrdi 3236 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (0[,]𝑈) ⊆ ℂ)
17 efcn 15436 . . . 4 exp ∈ (ℂ–cn→ℂ)
1817a1i 9 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → exp ∈ (ℂ–cn→ℂ))
19 ssel2 3219 . . . . 5 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → 𝑦 ∈ ℝ)
2019reefcld 12175 . . . 4 (((0[,]𝑈) ⊆ ℝ ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
215, 20sylan 283 . . 3 (((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) → (exp‘𝑦) ∈ ℝ)
22 ef0 12178 . . . . 5 (exp‘0) = 1
23 simpr 110 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 1 < 𝑈)
2422, 23eqbrtrid 4117 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘0) < 𝑈)
25 peano2re 8278 . . . . . 6 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
2625adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) ∈ ℝ)
27 reefcl 12174 . . . . . 6 (𝑈 ∈ ℝ → (exp‘𝑈) ∈ ℝ)
2827adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (exp‘𝑈) ∈ ℝ)
29 ltp1 8987 . . . . . 6 (𝑈 ∈ ℝ → 𝑈 < (𝑈 + 1))
3029adantr 276 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (𝑈 + 1))
318recnd 8171 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℂ)
32 ax-1cn 8088 . . . . . . 7 1 ∈ ℂ
33 addcom 8279 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑈 + 1) = (1 + 𝑈))
3431, 32, 33sylancl 413 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) = (1 + 𝑈))
358, 14elrpd 9885 . . . . . . 7 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 ∈ ℝ+)
36 efgt1p 12202 . . . . . . 7 (𝑈 ∈ ℝ+ → (1 + 𝑈) < (exp‘𝑈))
3735, 36syl 14 . . . . . 6 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (1 + 𝑈) < (exp‘𝑈))
3834, 37eqbrtrd 4104 . . . . 5 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → (𝑈 + 1) < (exp‘𝑈))
398, 26, 28, 30, 38lttrd 8268 . . . 4 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → 𝑈 < (exp‘𝑈))
4024, 39jca 306 . . 3 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ((exp‘0) < 𝑈𝑈 < (exp‘𝑈)))
41 simplll 533 . . . . . . 7 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑈 ∈ ℝ)
422, 41, 3sylancr 414 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (0[,]𝑈) ⊆ ℝ)
43 simplr 528 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ (0[,]𝑈))
4442, 43sseldd 3225 . . . . 5 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 ∈ ℝ)
45 simprl 529 . . . . . 6 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ (0[,]𝑈))
4642, 45sseldd 3225 . . . . 5 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑧 ∈ ℝ)
4744, 46jca 306 . . . 4 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
48 simprr 531 . . . 4 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → 𝑦 < 𝑧)
49 efltim 12204 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 → (exp‘𝑦) < (exp‘𝑧)))
5047, 48, 49sylc 62 . . 3 ((((𝑈 ∈ ℝ ∧ 1 < 𝑈) ∧ 𝑦 ∈ (0[,]𝑈)) ∧ (𝑧 ∈ (0[,]𝑈) ∧ 𝑦 < 𝑧)) → (exp‘𝑦) < (exp‘𝑧))
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 15311 . 2 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈)
52 ssrexv 3289 . 2 ((0(,)𝑈) ⊆ ℝ → (∃𝑥 ∈ (0(,)𝑈)(exp‘𝑥) = 𝑈 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈))
536, 51, 52sylc 62 1 ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  wss 3197   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   < clt 8177  +crp 9845  (,)cioo 10080  [,]cicc 10083  expce 12148  cnccncf 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-ico 10086  df-icc 10087  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325
This theorem is referenced by:  reeff1oleme  15440  reeff1o  15441
  Copyright terms: Public domain W3C validator