![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnnz1 | GIF version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
elnnz1 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9339 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | nnge1 9007 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
4 | 0lt1 8148 | . . . . 5 ⊢ 0 < 1 | |
5 | zre 9324 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 0re 8021 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
7 | 1re 8020 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | ltletr 8111 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) | |
9 | 6, 7, 8 | mp3an12 1338 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
10 | 5, 9 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
11 | 4, 10 | mpani 430 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 ≤ 𝑁 → 0 < 𝑁)) |
12 | 11 | imdistani 445 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
13 | elnnz 9330 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
14 | 12, 13 | sylibr 134 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ) |
15 | 3, 14 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 0cc0 7874 1c1 7875 < clt 8056 ≤ cle 8057 ℕcn 8984 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-z 9321 |
This theorem is referenced by: nnzrab 9344 znnnlt1 9368 eluz2b2 9671 elfznn 10123 flqge1nn 10366 resqrexlemdecn 11159 cvgratz 11678 prmdc 12271 4sqlem11 12542 oddennn 12552 nninfdclemlt 12611 psrbaglesuppg 14169 zabsle1 15156 gausslemma2dlem1a 15215 gausslemma2dlem4 15221 |
Copyright terms: Public domain | W3C validator |