![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnnz1 | GIF version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
elnnz1 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9272 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | nnge1 8942 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
4 | 0lt1 8084 | . . . . 5 ⊢ 0 < 1 | |
5 | zre 9257 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 0re 7957 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
7 | 1re 7956 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | ltletr 8047 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) | |
9 | 6, 7, 8 | mp3an12 1327 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
10 | 5, 9 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
11 | 4, 10 | mpani 430 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 ≤ 𝑁 → 0 < 𝑁)) |
12 | 11 | imdistani 445 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
13 | elnnz 9263 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
14 | 12, 13 | sylibr 134 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ) |
15 | 3, 14 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4004 ℝcr 7810 0cc0 7811 1c1 7812 < clt 7992 ≤ cle 7993 ℕcn 8919 ℤcz 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-z 9254 |
This theorem is referenced by: nnzrab 9277 znnnlt1 9301 eluz2b2 9603 elfznn 10054 flqge1nn 10294 resqrexlemdecn 11021 cvgratz 11540 prmdc 12130 oddennn 12393 nninfdclemlt 12452 zabsle1 14403 |
Copyright terms: Public domain | W3C validator |