Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnnz1 | GIF version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
elnnz1 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9210 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | nnge1 8880 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
4 | 0lt1 8025 | . . . . 5 ⊢ 0 < 1 | |
5 | zre 9195 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 0re 7899 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
7 | 1re 7898 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | ltletr 7988 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) | |
9 | 6, 7, 8 | mp3an12 1317 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
10 | 5, 9 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
11 | 4, 10 | mpani 427 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1 ≤ 𝑁 → 0 < 𝑁)) |
12 | 11 | imdistani 442 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
13 | elnnz 9201 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
14 | 12, 13 | sylibr 133 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ) |
15 | 3, 14 | impbii 125 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 1c1 7754 < clt 7933 ≤ cle 7934 ℕcn 8857 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-z 9192 |
This theorem is referenced by: nnzrab 9215 znnnlt1 9239 eluz2b2 9541 elfznn 9989 flqge1nn 10229 resqrexlemdecn 10954 cvgratz 11473 prmdc 12062 oddennn 12325 nninfdclemlt 12384 zabsle1 13540 |
Copyright terms: Public domain | W3C validator |