ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd GIF version

Theorem expnbnd 10534
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 982 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
21adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
3 simp2 983 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
43adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
5 simpr 109 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐴)
6 simp3 984 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
76adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐵)
8 1red 7887 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
91, 8resubcld 8250 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 − 1) ∈ ℝ)
103, 8resubcld 8250 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
118, 3posdifd 8401 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
126, 11mpbid 146 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
1310, 12gt0ap0d 8498 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) # 0)
149, 10, 13redivclapd 8701 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
15 arch 9081 . . . . . . 7 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1614, 15syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
17163expa 1185 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1817adantrl 470 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
19 simplll 523 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
2019adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 ∈ ℝ)
21 simpllr 524 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
22 1red 7887 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
2321, 22resubcld 8250 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵 − 1) ∈ ℝ)
24 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2524nnred 8840 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2623, 25remulcld 7902 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
2726, 22readdcld 7901 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2827adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2924nnnn0d 9137 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
30 reexpcl 10429 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3121, 29, 30syl2anc 409 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
3231adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵𝑘) ∈ ℝ)
33 simpr 109 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
34 1red 7887 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 ∈ ℝ)
3520, 34resubcld 8250 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) ∈ ℝ)
36 simplr 520 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ)
3736nnred 8840 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℝ)
3821adantr 274 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐵 ∈ ℝ)
3938, 34resubcld 8250 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵 − 1) ∈ ℝ)
40 simplrr 526 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 < 𝐵)
4140adantr 274 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 < 𝐵)
4234, 38posdifd 8401 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
4341, 42mpbid 146 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 < (𝐵 − 1))
44 ltdivmul 8741 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4535, 37, 39, 43, 44syl112anc 1224 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4633, 45mpbid 146 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) < ((𝐵 − 1) · 𝑘))
4739, 37remulcld 7902 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
4820, 34, 47ltsubaddd 8410 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) < ((𝐵 − 1) · 𝑘) ↔ 𝐴 < (((𝐵 − 1) · 𝑘) + 1)))
4946, 48mpbid 146 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (((𝐵 − 1) · 𝑘) + 1))
5036nnnn0d 9137 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ0)
51 0red 7873 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
52 0lt1 7996 . . . . . . . . . . . 12 0 < 1
53 0re 7872 . . . . . . . . . . . . 13 0 ∈ ℝ
54 1re 7871 . . . . . . . . . . . . 13 1 ∈ ℝ
55 lttr 7945 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5653, 54, 55mp3an12 1309 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5752, 56mpani 427 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
5821, 40, 57sylc 62 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
5951, 21, 58ltled 7988 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐵)
6059adantr 274 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 ≤ 𝐵)
61 bernneq2 10532 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6238, 50, 60, 61syl3anc 1220 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6320, 28, 32, 49, 62ltletrd 8292 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (𝐵𝑘))
6463ex 114 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘𝐴 < (𝐵𝑘)))
6564reximdva 2559 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → (∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))
6618, 65mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
672, 4, 5, 7, 66syl22anc 1221 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
68 1nn 8838 . . 3 1 ∈ ℕ
69 simpr 109 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
70 simpl2 986 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7170recnd 7900 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
72 exp1 10418 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
7371, 72syl 14 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → (𝐵↑1) = 𝐵)
7469, 73breqtrrd 3992 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵↑1))
75 oveq2 5829 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
7675breq2d 3977 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
7776rspcev 2816 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
7868, 74, 77sylancr 411 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
79 axltwlin 7939 . . . . 5 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8054, 79mp3an1 1306 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8180ancoms 266 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
82813impia 1182 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < 𝐵))
8367, 78, 82mpjaodan 788 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1335  wcel 2128  wrex 2436   class class class wbr 3965  (class class class)co 5821  cc 7724  cr 7725  0cc0 7726  1c1 7727   + caddc 7729   · cmul 7731   < clt 7906  cle 7907  cmin 8040   / cdiv 8539  cn 8827  0cn0 9084  cexp 10411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-n0 9085  df-z 9162  df-uz 9434  df-seqfrec 10338  df-exp 10412
This theorem is referenced by:  expnlbnd  10535
  Copyright terms: Public domain W3C validator