ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd GIF version

Theorem expnbnd 10893
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 1021 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
21adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
3 simp2 1022 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
43adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
5 simpr 110 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐴)
6 simp3 1023 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
76adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐵)
8 1red 8169 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
91, 8resubcld 8535 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 − 1) ∈ ℝ)
103, 8resubcld 8535 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
118, 3posdifd 8687 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
126, 11mpbid 147 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
1310, 12gt0ap0d 8784 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) # 0)
149, 10, 13redivclapd 8990 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
15 arch 9374 . . . . . . 7 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1614, 15syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
17163expa 1227 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1817adantrl 478 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
19 simplll 533 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
2019adantr 276 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 ∈ ℝ)
21 simpllr 534 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
22 1red 8169 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
2321, 22resubcld 8535 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵 − 1) ∈ ℝ)
24 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2524nnred 9131 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2623, 25remulcld 8185 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
2726, 22readdcld 8184 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2827adantr 276 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2924nnnn0d 9430 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
30 reexpcl 10786 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3121, 29, 30syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
3231adantr 276 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵𝑘) ∈ ℝ)
33 simpr 110 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
34 1red 8169 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 ∈ ℝ)
3520, 34resubcld 8535 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) ∈ ℝ)
36 simplr 528 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ)
3736nnred 9131 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℝ)
3821adantr 276 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐵 ∈ ℝ)
3938, 34resubcld 8535 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵 − 1) ∈ ℝ)
40 simplrr 536 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 < 𝐵)
4140adantr 276 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 < 𝐵)
4234, 38posdifd 8687 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
4341, 42mpbid 147 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 < (𝐵 − 1))
44 ltdivmul 9031 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4535, 37, 39, 43, 44syl112anc 1275 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4633, 45mpbid 147 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) < ((𝐵 − 1) · 𝑘))
4739, 37remulcld 8185 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
4820, 34, 47ltsubaddd 8696 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) < ((𝐵 − 1) · 𝑘) ↔ 𝐴 < (((𝐵 − 1) · 𝑘) + 1)))
4946, 48mpbid 147 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (((𝐵 − 1) · 𝑘) + 1))
5036nnnn0d 9430 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ0)
51 0red 8155 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
52 0lt1 8281 . . . . . . . . . . . 12 0 < 1
53 0re 8154 . . . . . . . . . . . . 13 0 ∈ ℝ
54 1re 8153 . . . . . . . . . . . . 13 1 ∈ ℝ
55 lttr 8228 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5653, 54, 55mp3an12 1361 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5752, 56mpani 430 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
5821, 40, 57sylc 62 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
5951, 21, 58ltled 8273 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐵)
6059adantr 276 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 ≤ 𝐵)
61 bernneq2 10891 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6238, 50, 60, 61syl3anc 1271 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6320, 28, 32, 49, 62ltletrd 8578 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (𝐵𝑘))
6463ex 115 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘𝐴 < (𝐵𝑘)))
6564reximdva 2632 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → (∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))
6618, 65mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
672, 4, 5, 7, 66syl22anc 1272 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
68 1nn 9129 . . 3 1 ∈ ℕ
69 simpr 110 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
70 simpl2 1025 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7170recnd 8183 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
72 exp1 10775 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
7371, 72syl 14 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → (𝐵↑1) = 𝐵)
7469, 73breqtrrd 4111 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵↑1))
75 oveq2 6015 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
7675breq2d 4095 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
7776rspcev 2907 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
7868, 74, 77sylancr 414 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
79 axltwlin 8222 . . . . 5 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8054, 79mp3an1 1358 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8180ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
82813impia 1224 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < 𝐵))
8367, 78, 82mpjaodan 803 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4083  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cle 8190  cmin 8325   / cdiv 8827  cn 9118  0cn0 9377  cexp 10768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-seqfrec 10678  df-exp 10769
This theorem is referenced by:  expnlbnd  10894  bitsfzolem  12473  bitsfi  12476  pclemub  12818
  Copyright terms: Public domain W3C validator