ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd GIF version

Theorem expnbnd 10629
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 997 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
21adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
3 simp2 998 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
43adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
5 simpr 110 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐴)
6 simp3 999 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
76adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐵)
8 1red 7963 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
91, 8resubcld 8328 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 − 1) ∈ ℝ)
103, 8resubcld 8328 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
118, 3posdifd 8479 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
126, 11mpbid 147 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
1310, 12gt0ap0d 8576 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) # 0)
149, 10, 13redivclapd 8781 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
15 arch 9162 . . . . . . 7 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1614, 15syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
17163expa 1203 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1817adantrl 478 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
19 simplll 533 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
2019adantr 276 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 ∈ ℝ)
21 simpllr 534 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
22 1red 7963 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
2321, 22resubcld 8328 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵 − 1) ∈ ℝ)
24 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2524nnred 8921 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2623, 25remulcld 7978 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
2726, 22readdcld 7977 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2827adantr 276 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2924nnnn0d 9218 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
30 reexpcl 10523 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3121, 29, 30syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
3231adantr 276 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵𝑘) ∈ ℝ)
33 simpr 110 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
34 1red 7963 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 ∈ ℝ)
3520, 34resubcld 8328 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) ∈ ℝ)
36 simplr 528 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ)
3736nnred 8921 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℝ)
3821adantr 276 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐵 ∈ ℝ)
3938, 34resubcld 8328 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵 − 1) ∈ ℝ)
40 simplrr 536 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 < 𝐵)
4140adantr 276 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 < 𝐵)
4234, 38posdifd 8479 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
4341, 42mpbid 147 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 < (𝐵 − 1))
44 ltdivmul 8822 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4535, 37, 39, 43, 44syl112anc 1242 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4633, 45mpbid 147 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) < ((𝐵 − 1) · 𝑘))
4739, 37remulcld 7978 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
4820, 34, 47ltsubaddd 8488 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) < ((𝐵 − 1) · 𝑘) ↔ 𝐴 < (((𝐵 − 1) · 𝑘) + 1)))
4946, 48mpbid 147 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (((𝐵 − 1) · 𝑘) + 1))
5036nnnn0d 9218 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ0)
51 0red 7949 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
52 0lt1 8074 . . . . . . . . . . . 12 0 < 1
53 0re 7948 . . . . . . . . . . . . 13 0 ∈ ℝ
54 1re 7947 . . . . . . . . . . . . 13 1 ∈ ℝ
55 lttr 8021 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5653, 54, 55mp3an12 1327 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5752, 56mpani 430 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
5821, 40, 57sylc 62 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
5951, 21, 58ltled 8066 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐵)
6059adantr 276 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 ≤ 𝐵)
61 bernneq2 10627 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6238, 50, 60, 61syl3anc 1238 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6320, 28, 32, 49, 62ltletrd 8370 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (𝐵𝑘))
6463ex 115 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘𝐴 < (𝐵𝑘)))
6564reximdva 2579 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → (∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))
6618, 65mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
672, 4, 5, 7, 66syl22anc 1239 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
68 1nn 8919 . . 3 1 ∈ ℕ
69 simpr 110 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
70 simpl2 1001 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7170recnd 7976 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
72 exp1 10512 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
7371, 72syl 14 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → (𝐵↑1) = 𝐵)
7469, 73breqtrrd 4028 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵↑1))
75 oveq2 5877 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
7675breq2d 4012 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
7776rspcev 2841 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
7868, 74, 77sylancr 414 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
79 axltwlin 8015 . . . . 5 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8054, 79mp3an1 1324 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8180ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
82813impia 1200 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < 𝐵))
8367, 78, 82mpjaodan 798 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4000  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  0cn0 9165  cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  expnlbnd  10630  pclemub  12270
  Copyright terms: Public domain W3C validator