ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinq12gt0 GIF version

Theorem sinq12gt0 12924
Description: The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sinq12gt0 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))

Proof of Theorem sinq12gt0
StepHypRef Expression
1 0xr 7819 . . 3 0 ∈ ℝ*
2 pire 12880 . . . 4 π ∈ ℝ
32rexri 7830 . . 3 π ∈ ℝ*
4 elioo2 9711 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
51, 3, 4mp2an 422 . 2 (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π))
6 rehalfcl 8954 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
763ad2ant1 1002 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) ∈ ℝ)
8 halfpos2 8957 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2)))
98biimpa 294 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
1093adant3 1001 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (𝐴 / 2))
11 2re 8797 . . . . . . . . 9 2 ∈ ℝ
12 2pos 8818 . . . . . . . . 9 0 < 2
1311, 12pm3.2i 270 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
14 ltdiv1 8633 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
152, 13, 14mp3an23 1307 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1615adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1716biimp3a 1323 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) < (π / 2))
18 sincosq1lem 12919 . . . . 5 (((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)) → 0 < (sin‘(𝐴 / 2)))
197, 10, 17, 18syl3anc 1216 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘(𝐴 / 2)))
20 resubcl 8033 . . . . . . . . 9 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ) → (π − 𝐴) ∈ ℝ)
212, 20mpan 420 . . . . . . . 8 (𝐴 ∈ ℝ → (π − 𝐴) ∈ ℝ)
22 rehalfcl 8954 . . . . . . . 8 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
2321, 22syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
24233ad2ant1 1002 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) ∈ ℝ)
25 posdif 8224 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 < π ↔ 0 < (π − 𝐴)))
262, 25mpan2 421 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < (π − 𝐴)))
27 halfpos2 8957 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2821, 27syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2926, 28bitrd 187 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3029adantr 274 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3130biimp3a 1323 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < ((π − 𝐴) / 2))
32 ltsubpos 8223 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (0 < 𝐴 ↔ (π − 𝐴) < π))
332, 32mpan2 421 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (π − 𝐴) < π))
34 ltdiv1 8633 . . . . . . . . . . 11 (((π − 𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
352, 13, 34mp3an23 1307 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3621, 35syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3733, 36bitrd 187 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ((π − 𝐴) / 2) < (π / 2)))
3837biimpa 294 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((π − 𝐴) / 2) < (π / 2))
39383adant3 1001 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) < (π / 2))
40 sincosq1lem 12919 . . . . . 6 ((((π − 𝐴) / 2) ∈ ℝ ∧ 0 < ((π − 𝐴) / 2) ∧ ((π − 𝐴) / 2) < (π / 2)) → 0 < (sin‘((π − 𝐴) / 2)))
4124, 31, 39, 40syl3anc 1216 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘((π − 𝐴) / 2)))
42 recn 7760 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43 picn 12881 . . . . . . . . . 10 π ∈ ℂ
44 2cn 8798 . . . . . . . . . . 11 2 ∈ ℂ
45 2ap0 8820 . . . . . . . . . . 11 2 # 0
4644, 45pm3.2i 270 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 # 0)
47 divsubdirap 8475 . . . . . . . . . 10 ((π ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4843, 46, 47mp3an13 1306 . . . . . . . . 9 (𝐴 ∈ ℂ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4942, 48syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
5049fveq2d 5425 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (sin‘((π / 2) − (𝐴 / 2))))
516recnd 7801 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℂ)
52 sinhalfpim 12915 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5351, 52syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5450, 53eqtrd 2172 . . . . . 6 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
55543ad2ant1 1002 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
5641, 55breqtrd 3954 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (cos‘(𝐴 / 2)))
57 resincl 11434 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
58 recoscl 11435 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
5957, 58jca 304 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ))
60 axmulgt0 7843 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
616, 59, 603syl 17 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
62 remulcl 7755 . . . . . . . . 9 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
636, 59, 623syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
64 axmulgt0 7843 . . . . . . . 8 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6511, 63, 64sylancr 410 . . . . . . 7 (𝐴 ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6612, 65mpani 426 . . . . . 6 (𝐴 ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6761, 66syld 45 . . . . 5 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
68673ad2ant1 1002 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6919, 56, 68mp2and 429 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
70 divcanap2 8447 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (2 · (𝐴 / 2)) = 𝐴)
7144, 45, 70mp3an23 1307 . . . . . . 7 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7242, 71syl 14 . . . . . 6 (𝐴 ∈ ℝ → (2 · (𝐴 / 2)) = 𝐴)
7372fveq2d 5425 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
74 sin2t 11463 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7551, 74syl 14 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7673, 75eqtr3d 2174 . . . 4 (𝐴 ∈ ℝ → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
77763ad2ant1 1002 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7869, 77breqtrrd 3956 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴))
795, 78sylbi 120 1 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7625  cr 7626  0cc0 7627   · cmul 7632  *cxr 7806   < clt 7807  cmin 7940   # cap 8350   / cdiv 8439  2c2 8778  (,)cioo 9678  sincsin 11357  cosccos 11358  πcpi 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-rest 12132  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-met 12168  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-ntr 12275  df-cn 12367  df-cnp 12368  df-tx 12432  df-cncf 12737  df-limced 12804  df-dvap 12805
This theorem is referenced by:  sinq34lt0t  12925  cosq14gt0  12926  cosordlem  12943
  Copyright terms: Public domain W3C validator