ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinq12gt0 GIF version

Theorem sinq12gt0 13162
Description: The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sinq12gt0 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))

Proof of Theorem sinq12gt0
StepHypRef Expression
1 0xr 7924 . . 3 0 ∈ ℝ*
2 pire 13118 . . . 4 π ∈ ℝ
32rexri 7935 . . 3 π ∈ ℝ*
4 elioo2 9825 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
51, 3, 4mp2an 423 . 2 (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π))
6 rehalfcl 9060 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
763ad2ant1 1003 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) ∈ ℝ)
8 halfpos2 9063 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2)))
98biimpa 294 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
1093adant3 1002 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (𝐴 / 2))
11 2re 8903 . . . . . . . . 9 2 ∈ ℝ
12 2pos 8924 . . . . . . . . 9 0 < 2
1311, 12pm3.2i 270 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
14 ltdiv1 8739 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
152, 13, 14mp3an23 1311 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1615adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1716biimp3a 1327 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) < (π / 2))
18 sincosq1lem 13157 . . . . 5 (((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)) → 0 < (sin‘(𝐴 / 2)))
197, 10, 17, 18syl3anc 1220 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘(𝐴 / 2)))
20 resubcl 8139 . . . . . . . . 9 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ) → (π − 𝐴) ∈ ℝ)
212, 20mpan 421 . . . . . . . 8 (𝐴 ∈ ℝ → (π − 𝐴) ∈ ℝ)
22 rehalfcl 9060 . . . . . . . 8 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
2321, 22syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
24233ad2ant1 1003 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) ∈ ℝ)
25 posdif 8330 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 < π ↔ 0 < (π − 𝐴)))
262, 25mpan2 422 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < (π − 𝐴)))
27 halfpos2 9063 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2821, 27syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2926, 28bitrd 187 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3029adantr 274 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3130biimp3a 1327 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < ((π − 𝐴) / 2))
32 ltsubpos 8329 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (0 < 𝐴 ↔ (π − 𝐴) < π))
332, 32mpan2 422 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (π − 𝐴) < π))
34 ltdiv1 8739 . . . . . . . . . . 11 (((π − 𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
352, 13, 34mp3an23 1311 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3621, 35syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3733, 36bitrd 187 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ((π − 𝐴) / 2) < (π / 2)))
3837biimpa 294 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((π − 𝐴) / 2) < (π / 2))
39383adant3 1002 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) < (π / 2))
40 sincosq1lem 13157 . . . . . 6 ((((π − 𝐴) / 2) ∈ ℝ ∧ 0 < ((π − 𝐴) / 2) ∧ ((π − 𝐴) / 2) < (π / 2)) → 0 < (sin‘((π − 𝐴) / 2)))
4124, 31, 39, 40syl3anc 1220 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘((π − 𝐴) / 2)))
42 recn 7865 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43 picn 13119 . . . . . . . . . 10 π ∈ ℂ
44 2cn 8904 . . . . . . . . . . 11 2 ∈ ℂ
45 2ap0 8926 . . . . . . . . . . 11 2 # 0
4644, 45pm3.2i 270 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 # 0)
47 divsubdirap 8581 . . . . . . . . . 10 ((π ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4843, 46, 47mp3an13 1310 . . . . . . . . 9 (𝐴 ∈ ℂ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4942, 48syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
5049fveq2d 5472 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (sin‘((π / 2) − (𝐴 / 2))))
516recnd 7906 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℂ)
52 sinhalfpim 13153 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5351, 52syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5450, 53eqtrd 2190 . . . . . 6 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
55543ad2ant1 1003 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
5641, 55breqtrd 3990 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (cos‘(𝐴 / 2)))
57 resincl 11617 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
58 recoscl 11618 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
5957, 58jca 304 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ))
60 axmulgt0 7949 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
616, 59, 603syl 17 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
62 remulcl 7860 . . . . . . . . 9 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
636, 59, 623syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
64 axmulgt0 7949 . . . . . . . 8 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6511, 63, 64sylancr 411 . . . . . . 7 (𝐴 ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6612, 65mpani 427 . . . . . 6 (𝐴 ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6761, 66syld 45 . . . . 5 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
68673ad2ant1 1003 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6919, 56, 68mp2and 430 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
70 divcanap2 8553 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (2 · (𝐴 / 2)) = 𝐴)
7144, 45, 70mp3an23 1311 . . . . . . 7 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7242, 71syl 14 . . . . . 6 (𝐴 ∈ ℝ → (2 · (𝐴 / 2)) = 𝐴)
7372fveq2d 5472 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
74 sin2t 11646 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7551, 74syl 14 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7673, 75eqtr3d 2192 . . . 4 (𝐴 ∈ ℝ → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
77763ad2ant1 1003 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7869, 77breqtrrd 3992 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴))
795, 78sylbi 120 1 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128   class class class wbr 3965  cfv 5170  (class class class)co 5824  cc 7730  cr 7731  0cc0 7732   · cmul 7737  *cxr 7911   < clt 7912  cmin 8046   # cap 8456   / cdiv 8545  2c2 8884  (,)cioo 9792  sincsin 11541  cosccos 11542  πcpi 11544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852  ax-pre-suploc 7853  ax-addf 7854  ax-mulf 7855
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-disj 3943  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-of 6032  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-map 6595  df-pm 6596  df-en 6686  df-dom 6687  df-fin 6688  df-sup 6928  df-inf 6929  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-5 8895  df-6 8896  df-7 8897  df-8 8898  df-9 8899  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-xneg 9679  df-xadd 9680  df-ioo 9796  df-ioc 9797  df-ico 9798  df-icc 9799  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-fac 10600  df-bc 10622  df-ihash 10650  df-shft 10715  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-sumdc 11251  df-ef 11545  df-sin 11547  df-cos 11548  df-pi 11550  df-rest 12364  df-topgen 12383  df-psmet 12398  df-xmet 12399  df-met 12400  df-bl 12401  df-mopn 12402  df-top 12407  df-topon 12420  df-bases 12452  df-ntr 12507  df-cn 12599  df-cnp 12600  df-tx 12664  df-cncf 12969  df-limced 13036  df-dvap 13037
This theorem is referenced by:  sinq34lt0t  13163  cosq14gt0  13164  cosordlem  13181
  Copyright terms: Public domain W3C validator