ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinq12gt0 GIF version

Theorem sinq12gt0 14122
Description: The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sinq12gt0 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))

Proof of Theorem sinq12gt0
StepHypRef Expression
1 0xr 8000 . . 3 0 ∈ ℝ*
2 pire 14078 . . . 4 π ∈ ℝ
32rexri 8011 . . 3 π ∈ ℝ*
4 elioo2 9917 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
51, 3, 4mp2an 426 . 2 (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π))
6 rehalfcl 9142 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
763ad2ant1 1018 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) ∈ ℝ)
8 halfpos2 9145 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2)))
98biimpa 296 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
1093adant3 1017 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (𝐴 / 2))
11 2re 8985 . . . . . . . . 9 2 ∈ ℝ
12 2pos 9006 . . . . . . . . 9 0 < 2
1311, 12pm3.2i 272 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
14 ltdiv1 8821 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
152, 13, 14mp3an23 1329 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1615adantr 276 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1716biimp3a 1345 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) < (π / 2))
18 sincosq1lem 14117 . . . . 5 (((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)) → 0 < (sin‘(𝐴 / 2)))
197, 10, 17, 18syl3anc 1238 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘(𝐴 / 2)))
20 resubcl 8217 . . . . . . . . 9 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ) → (π − 𝐴) ∈ ℝ)
212, 20mpan 424 . . . . . . . 8 (𝐴 ∈ ℝ → (π − 𝐴) ∈ ℝ)
22 rehalfcl 9142 . . . . . . . 8 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
2321, 22syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
24233ad2ant1 1018 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) ∈ ℝ)
25 posdif 8408 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 < π ↔ 0 < (π − 𝐴)))
262, 25mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < (π − 𝐴)))
27 halfpos2 9145 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2821, 27syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2926, 28bitrd 188 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3029adantr 276 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3130biimp3a 1345 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < ((π − 𝐴) / 2))
32 ltsubpos 8407 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (0 < 𝐴 ↔ (π − 𝐴) < π))
332, 32mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (π − 𝐴) < π))
34 ltdiv1 8821 . . . . . . . . . . 11 (((π − 𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
352, 13, 34mp3an23 1329 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3621, 35syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3733, 36bitrd 188 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ((π − 𝐴) / 2) < (π / 2)))
3837biimpa 296 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((π − 𝐴) / 2) < (π / 2))
39383adant3 1017 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) < (π / 2))
40 sincosq1lem 14117 . . . . . 6 ((((π − 𝐴) / 2) ∈ ℝ ∧ 0 < ((π − 𝐴) / 2) ∧ ((π − 𝐴) / 2) < (π / 2)) → 0 < (sin‘((π − 𝐴) / 2)))
4124, 31, 39, 40syl3anc 1238 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘((π − 𝐴) / 2)))
42 recn 7941 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43 picn 14079 . . . . . . . . . 10 π ∈ ℂ
44 2cn 8986 . . . . . . . . . . 11 2 ∈ ℂ
45 2ap0 9008 . . . . . . . . . . 11 2 # 0
4644, 45pm3.2i 272 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 # 0)
47 divsubdirap 8661 . . . . . . . . . 10 ((π ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4843, 46, 47mp3an13 1328 . . . . . . . . 9 (𝐴 ∈ ℂ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4942, 48syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
5049fveq2d 5518 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (sin‘((π / 2) − (𝐴 / 2))))
516recnd 7982 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℂ)
52 sinhalfpim 14113 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5351, 52syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5450, 53eqtrd 2210 . . . . . 6 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
55543ad2ant1 1018 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
5641, 55breqtrd 4028 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (cos‘(𝐴 / 2)))
57 resincl 11721 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
58 recoscl 11722 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
5957, 58jca 306 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ))
60 axmulgt0 8025 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
616, 59, 603syl 17 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
62 remulcl 7936 . . . . . . . . 9 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
636, 59, 623syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
64 axmulgt0 8025 . . . . . . . 8 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6511, 63, 64sylancr 414 . . . . . . 7 (𝐴 ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6612, 65mpani 430 . . . . . 6 (𝐴 ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6761, 66syld 45 . . . . 5 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
68673ad2ant1 1018 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6919, 56, 68mp2and 433 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
70 divcanap2 8633 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (2 · (𝐴 / 2)) = 𝐴)
7144, 45, 70mp3an23 1329 . . . . . . 7 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7242, 71syl 14 . . . . . 6 (𝐴 ∈ ℝ → (2 · (𝐴 / 2)) = 𝐴)
7372fveq2d 5518 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
74 sin2t 11750 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7551, 74syl 14 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7673, 75eqtr3d 2212 . . . 4 (𝐴 ∈ ℝ → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
77763ad2ant1 1018 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7869, 77breqtrrd 4030 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴))
795, 78sylbi 121 1 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4002  cfv 5215  (class class class)co 5872  cc 7806  cr 7807  0cc0 7808   · cmul 7813  *cxr 7987   < clt 7988  cmin 8124   # cap 8534   / cdiv 8625  2c2 8966  (,)cioo 9884  sincsin 11645  cosccos 11646  πcpi 11648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926  ax-arch 7927  ax-caucvg 7928  ax-pre-suploc 7929  ax-addf 7930  ax-mulf 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-disj 3980  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-isom 5224  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-of 6080  df-1st 6138  df-2nd 6139  df-recs 6303  df-irdg 6368  df-frec 6389  df-1o 6414  df-oadd 6418  df-er 6532  df-map 6647  df-pm 6648  df-en 6738  df-dom 6739  df-fin 6740  df-sup 6980  df-inf 6981  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-5 8977  df-6 8978  df-7 8979  df-8 8980  df-9 8981  df-n0 9173  df-z 9250  df-uz 9525  df-q 9616  df-rp 9650  df-xneg 9768  df-xadd 9769  df-ioo 9888  df-ioc 9889  df-ico 9890  df-icc 9891  df-fz 10005  df-fzo 10138  df-seqfrec 10441  df-exp 10515  df-fac 10699  df-bc 10721  df-ihash 10749  df-shft 10817  df-cj 10844  df-re 10845  df-im 10846  df-rsqrt 11000  df-abs 11001  df-clim 11280  df-sumdc 11355  df-ef 11649  df-sin 11651  df-cos 11652  df-pi 11654  df-rest 12678  df-topgen 12697  df-psmet 13316  df-xmet 13317  df-met 13318  df-bl 13319  df-mopn 13320  df-top 13367  df-topon 13380  df-bases 13412  df-ntr 13467  df-cn 13559  df-cnp 13560  df-tx 13624  df-cncf 13929  df-limced 13996  df-dvap 13997
This theorem is referenced by:  sinq34lt0t  14123  cosq14gt0  14124  cosordlem  14141
  Copyright terms: Public domain W3C validator