ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsnprmd GIF version

Theorem dvdsnprmd 11806
Description: If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g (𝜑 → 1 < 𝐴)
dvdsnprmd.l (𝜑𝐴 < 𝑁)
dvdsnprmd.d (𝜑𝐴𝑁)
Assertion
Ref Expression
dvdsnprmd (𝜑 → ¬ 𝑁 ∈ ℙ)

Proof of Theorem dvdsnprmd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2 (𝜑𝐴𝑁)
2 dvdszrcl 11498 . . . 4 (𝐴𝑁 → (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 11495 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
41, 2, 33syl 17 . . 3 (𝜑 → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
5 2z 9082 . . . . . . . . 9 2 ∈ ℤ
65a1i 9 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ∈ ℤ)
7 simplr 519 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ ℤ)
8 dvdsnprmd.l . . . . . . . . . . . . 13 (𝜑𝐴 < 𝑁)
98adantr 274 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → 𝐴 < 𝑁)
109adantr 274 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < 𝑁)
11 breq2 3933 . . . . . . . . . . . 12 ((𝑘 · 𝐴) = 𝑁 → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1211adantl 275 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1310, 12mpbird 166 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < (𝑘 · 𝐴))
14 dvdsnprmd.g . . . . . . . . . . . . . 14 (𝜑 → 1 < 𝐴)
15 zre 9058 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
16153ad2ant1 1002 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝐴 ∈ ℝ)
17 zre 9058 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
18173ad2ant3 1004 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
19 0lt1 7889 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
20 0red 7767 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 0 ∈ ℝ)
21 1red 7781 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 1 ∈ ℝ)
22 lttr 7838 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2320, 21, 15, 22syl3anc 1216 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2419, 23mpani 426 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → (1 < 𝐴 → 0 < 𝐴))
2524imp 123 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 0 < 𝐴)
26253adant3 1001 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 0 < 𝐴)
2716, 18, 263jca 1161 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
28273exp 1180 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
2928adantr 274 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
301, 2, 293syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
3114, 30mpd 13 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴)))
3231imp 123 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
3332adantr 274 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
34 ltmulgt12 8623 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3533, 34syl 14 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3613, 35mpbird 166 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 1 < 𝑘)
37 df-2 8779 . . . . . . . . . . 11 2 = (1 + 1)
3837breq1i 3936 . . . . . . . . . 10 (2 ≤ 𝑘 ↔ (1 + 1) ≤ 𝑘)
39 1zzd 9081 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → 1 ∈ ℤ)
40 zltp1le 9108 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4139, 40mpancom 418 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4241bicomd 140 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4342adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4443adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4538, 44syl5bb 191 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (2 ≤ 𝑘 ↔ 1 < 𝑘))
4636, 45mpbird 166 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ≤ 𝑘)
47 eluz2 9332 . . . . . . . 8 (𝑘 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘))
486, 7, 46, 47syl3anbrc 1165 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ (ℤ‘2))
495a1i 9 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ∈ ℤ)
50 simpl 108 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 𝐴 ∈ ℤ)
51 1zzd 9081 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 1 ∈ ℤ)
52 zltp1le 9108 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5351, 52mpancom 418 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5453biimpa 294 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (1 + 1) ≤ 𝐴)
5537breq1i 3936 . . . . . . . . . . . . . . . 16 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5654, 55sylibr 133 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ≤ 𝐴)
5749, 50, 563jca 1161 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5857ex 114 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
5958adantr 274 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
601, 2, 593syl 17 . . . . . . . . . . 11 (𝜑 → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
6114, 60mpd 13 . . . . . . . . . 10 (𝜑 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
62 eluz2 9332 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
6361, 62sylibr 133 . . . . . . . . 9 (𝜑𝐴 ∈ (ℤ‘2))
6463adantr 274 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
6564adantr 274 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 ∈ (ℤ‘2))
66 nprm 11804 . . . . . . 7 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑘 · 𝐴) ∈ ℙ)
6748, 65, 66syl2anc 408 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ (𝑘 · 𝐴) ∈ ℙ)
68 eleq1 2202 . . . . . . . 8 ((𝑘 · 𝐴) = 𝑁 → ((𝑘 · 𝐴) ∈ ℙ ↔ 𝑁 ∈ ℙ))
6968notbid 656 . . . . . . 7 ((𝑘 · 𝐴) = 𝑁 → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7069adantl 275 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7167, 70mpbid 146 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ 𝑁 ∈ ℙ)
7271ex 114 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝑁 → ¬ 𝑁 ∈ ℙ))
7372rexlimdva 2549 . . 3 (𝜑 → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁 → ¬ 𝑁 ∈ ℙ))
744, 73sylbid 149 . 2 (𝜑 → (𝐴𝑁 → ¬ 𝑁 ∈ ℙ))
751, 74mpd 13 1 (𝜑 → ¬ 𝑁 ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  2c2 8771  cz 9054  cuz 9326  cdvds 11493  cprime 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-prm 11789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator