| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnnn0c | GIF version | ||
| Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.) |
| Ref | Expression |
|---|---|
| elnnnn0c | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 9384 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 2 | nnge1 9141 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| 4 | 0lt1 8281 | . . . . 5 ⊢ 0 < 1 | |
| 5 | nn0re 9386 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 6 | 0re 8154 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 7 | 1re 8153 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 8 | ltletr 8244 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) | |
| 9 | 6, 7, 8 | mp3an12 1361 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
| 10 | 5, 9 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
| 11 | 4, 10 | mpani 430 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → 0 < 𝑁)) |
| 12 | 11 | imdistani 445 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
| 13 | elnnnn0b 9421 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | |
| 14 | 12, 13 | sylibr 134 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ) |
| 15 | 3, 14 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 0cc0 8007 1c1 8008 < clt 8189 ≤ cle 8190 ℕcn 9118 ℕ0cn0 9377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-inn 9119 df-n0 9378 |
| This theorem is referenced by: nn0ge2m1nn 9437 wrdsymb1 11116 lswccats1fst 11183 nn0o1gt2 12424 pcelnn 12852 lgsabs1 15726 |
| Copyright terms: Public domain | W3C validator |