| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnnn0c | GIF version | ||
| Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.) |
| Ref | Expression |
|---|---|
| elnnnn0c | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 9315 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 2 | nnge1 9072 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| 4 | 0lt1 8212 | . . . . 5 ⊢ 0 < 1 | |
| 5 | nn0re 9317 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 6 | 0re 8085 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 7 | 1re 8084 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 8 | ltletr 8175 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) | |
| 9 | 6, 7, 8 | mp3an12 1340 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
| 10 | 5, 9 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
| 11 | 4, 10 | mpani 430 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → 0 < 𝑁)) |
| 12 | 11 | imdistani 445 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
| 13 | elnnnn0b 9352 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | |
| 14 | 12, 13 | sylibr 134 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ) |
| 15 | 3, 14 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4048 ℝcr 7937 0cc0 7938 1c1 7939 < clt 8120 ≤ cle 8121 ℕcn 9049 ℕ0cn0 9308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-xp 4686 df-cnv 4688 df-iota 5238 df-fv 5285 df-ov 5957 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-inn 9050 df-n0 9309 |
| This theorem is referenced by: nn0ge2m1nn 9368 wrdsymb1 11043 lswccats1fst 11110 nn0o1gt2 12266 pcelnn 12694 lgsabs1 15566 |
| Copyright terms: Public domain | W3C validator |