ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0c GIF version

Theorem elnnnn0c 9402
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
elnnnn0c (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))

Proof of Theorem elnnnn0c
StepHypRef Expression
1 nnnn0 9364 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nnge1 9121 . . 3 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
31, 2jca 306 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
4 0lt1 8261 . . . . 5 0 < 1
5 nn0re 9366 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6 0re 8134 . . . . . . 7 0 ∈ ℝ
7 1re 8133 . . . . . . 7 1 ∈ ℝ
8 ltletr 8224 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
96, 7, 8mp3an12 1361 . . . . . 6 (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
105, 9syl 14 . . . . 5 (𝑁 ∈ ℕ0 → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
114, 10mpani 430 . . . 4 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → 0 < 𝑁))
1211imdistani 445 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
13 elnnnn0b 9401 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
1412, 13sylibr 134 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
153, 14impbii 126 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200   class class class wbr 4082  cr 7986  0cc0 7987  1c1 7988   < clt 8169  cle 8170  cn 9098  0cn0 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-iota 5274  df-fv 5322  df-ov 5997  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-inn 9099  df-n0 9358
This theorem is referenced by:  nn0ge2m1nn  9417  wrdsymb1  11094  lswccats1fst  11161  nn0o1gt2  12402  pcelnn  12830  lgsabs1  15703
  Copyright terms: Public domain W3C validator