![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnnnn0c | GIF version |
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.) |
Ref | Expression |
---|---|
elnnnn0c | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 9253 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | nnge1 9010 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
4 | 0lt1 8151 | . . . . 5 ⊢ 0 < 1 | |
5 | nn0re 9255 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | 0re 8024 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
7 | 1re 8023 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | ltletr 8114 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) | |
9 | 6, 7, 8 | mp3an12 1338 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
10 | 5, 9 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
11 | 4, 10 | mpani 430 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → 0 < 𝑁)) |
12 | 11 | imdistani 445 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
13 | elnnnn0b 9290 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | |
14 | 12, 13 | sylibr 134 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ) |
15 | 3, 14 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 class class class wbr 4033 ℝcr 7876 0cc0 7877 1c1 7878 < clt 8059 ≤ cle 8060 ℕcn 8987 ℕ0cn0 9246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-ltadd 7993 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-inn 8988 df-n0 9247 |
This theorem is referenced by: nn0ge2m1nn 9306 wrdsymb1 10956 nn0o1gt2 12052 pcelnn 12466 lgsabs1 15247 |
Copyright terms: Public domain | W3C validator |