ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddge22np1 GIF version

Theorem oddge22np1 11818
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
oddge22np1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem oddge22np1
StepHypRef Expression
1 eleq1 2229 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
2 nn0z 9211 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 275 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
4 eluz2 9472 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)))
5 2re 8927 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
65a1i 9 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 2 ∈ ℝ)
7 1red 7914 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 1 ∈ ℝ)
8 2nn0 9131 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
98a1i 9 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
10 id 19 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
119, 10nn0mulcld 9172 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
1211nn0red 9168 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℝ)
136, 7, 12lesubaddd 8440 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) ↔ 2 ≤ ((2 · 𝑛) + 1)))
14 2m1e1 8975 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
1514breq1i 3989 . . . . . . . . . . . . . . . 16 ((2 − 1) ≤ (2 · 𝑛) ↔ 1 ≤ (2 · 𝑛))
16 nn0re 9123 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
17 2pos 8948 . . . . . . . . . . . . . . . . . . . 20 0 < 2
185, 17pm3.2i 270 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ ∧ 0 < 2)
1918a1i 9 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
20 ledivmul 8772 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑛 ↔ 1 ≤ (2 · 𝑛)))
217, 16, 19, 20syl3anc 1228 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 ↔ 1 ≤ (2 · 𝑛)))
22 halfgt0 9072 . . . . . . . . . . . . . . . . . 18 0 < (1 / 2)
23 0red 7900 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → 0 ∈ ℝ)
24 halfre 9070 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℝ
2524a1i 9 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1 / 2) ∈ ℝ)
26 ltletr 7988 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2723, 25, 16, 26syl3anc 1228 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2822, 27mpani 427 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 → 0 < 𝑛))
2921, 28sylbird 169 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (1 ≤ (2 · 𝑛) → 0 < 𝑛))
3015, 29syl5bi 151 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) → 0 < 𝑛))
3113, 30sylbird 169 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2 ≤ ((2 · 𝑛) + 1) → 0 < 𝑛))
3231com12 30 . . . . . . . . . . . . 13 (2 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
33323ad2ant3 1010 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
344, 33sylbi 120 . . . . . . . . . . 11 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
3534imp 123 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 0 < 𝑛)
36 elnnz 9201 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
373, 35, 36sylanbrc 414 . . . . . . . . 9 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ)
3837ex 114 . . . . . . . 8 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ))
391, 38syl6bir 163 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ)))
4039com13 80 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑁 ∈ (ℤ‘2) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ)))
4140impcom 124 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ))
4241pm4.71rd 392 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4342bicomd 140 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁))
4443rexbidva 2463 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
45 nnssnn0 9117 . . 3 ℕ ⊆ ℕ0
46 rexss 3209 . . 3 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4745, 46mp1i 10 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
48 eluzge2nn0 9507 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
49 oddnn02np1 11817 . . 3 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
5048, 49syl 14 . 2 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
5144, 47, 503bitr4rd 220 1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wrex 2445  wss 3116   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  2c2 8908  0cn0 9114  cz 9191  cuz 9466  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-dvds 11728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator