Proof of Theorem oddge22np1
Step | Hyp | Ref
| Expression |
1 | | eleq1 2240 |
. . . . . . . 8
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈
(ℤ≥‘2) ↔ 𝑁 ∈
(ℤ≥‘2))) |
2 | | nn0z 9262 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
3 | 2 | adantl 277 |
. . . . . . . . . 10
⊢ ((((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℤ) |
4 | | eluz2 9523 |
. . . . . . . . . . . 12
⊢ (((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ((2 ·
𝑛) + 1) ∈ ℤ
∧ 2 ≤ ((2 · 𝑛) + 1))) |
5 | | 2re 8978 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
6 | 5 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℝ) |
7 | | 1red 7963 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ 1 ∈ ℝ) |
8 | | 2nn0 9182 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ0 |
9 | 8 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ0) |
10 | | id 19 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
11 | 9, 10 | nn0mulcld 9223 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℕ0) |
12 | 11 | nn0red 9219 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℝ) |
13 | 6, 7, 12 | lesubaddd 8489 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ ((2 − 1) ≤ (2 · 𝑛) ↔ 2 ≤ ((2 · 𝑛) + 1))) |
14 | | 2m1e1 9026 |
. . . . . . . . . . . . . . . . 17
⊢ (2
− 1) = 1 |
15 | 14 | breq1i 4007 |
. . . . . . . . . . . . . . . 16
⊢ ((2
− 1) ≤ (2 · 𝑛) ↔ 1 ≤ (2 · 𝑛)) |
16 | | nn0re 9174 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
17 | | 2pos 8999 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 <
2 |
18 | 5, 17 | pm3.2i 272 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
ℝ ∧ 0 < 2) |
19 | 18 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ (2 ∈ ℝ ∧ 0 < 2)) |
20 | | ledivmul 8823 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℝ ∧ 𝑛
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤
𝑛 ↔ 1 ≤ (2 ·
𝑛))) |
21 | 7, 16, 19, 20 | syl3anc 1238 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ ((1 / 2) ≤ 𝑛
↔ 1 ≤ (2 · 𝑛))) |
22 | | halfgt0 9123 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 < (1
/ 2) |
23 | | 0red 7949 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ 0 ∈ ℝ) |
24 | | halfre 9121 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 / 2)
∈ ℝ |
25 | 24 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ (1 / 2) ∈ ℝ) |
26 | | ltletr 8037 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((0 < (1 / 2)
∧ (1 / 2) ≤ 𝑛)
→ 0 < 𝑛)) |
27 | 23, 25, 16, 26 | syl3anc 1238 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛)) |
28 | 22, 27 | mpani 430 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ ((1 / 2) ≤ 𝑛
→ 0 < 𝑛)) |
29 | 21, 28 | sylbird 170 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ (1 ≤ (2 · 𝑛) → 0 < 𝑛)) |
30 | 15, 29 | biimtrid 152 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ ((2 − 1) ≤ (2 · 𝑛) → 0 < 𝑛)) |
31 | 13, 30 | sylbird 170 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (2 ≤ ((2 · 𝑛) + 1) → 0 < 𝑛)) |
32 | 31 | com12 30 |
. . . . . . . . . . . . 13
⊢ (2 ≤
((2 · 𝑛) + 1) →
(𝑛 ∈
ℕ0 → 0 < 𝑛)) |
33 | 32 | 3ad2ant3 1020 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2
· 𝑛) + 1)) →
(𝑛 ∈
ℕ0 → 0 < 𝑛)) |
34 | 4, 33 | sylbi 121 |
. . . . . . . . . . 11
⊢ (((2
· 𝑛) + 1) ∈
(ℤ≥‘2) → (𝑛 ∈ ℕ0 → 0 <
𝑛)) |
35 | 34 | imp 124 |
. . . . . . . . . 10
⊢ ((((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 0 <
𝑛) |
36 | | elnnz 9252 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 <
𝑛)) |
37 | 3, 35, 36 | sylanbrc 417 |
. . . . . . . . 9
⊢ ((((2
· 𝑛) + 1) ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ) |
38 | 37 | ex 115 |
. . . . . . . 8
⊢ (((2
· 𝑛) + 1) ∈
(ℤ≥‘2) → (𝑛 ∈ ℕ0 → 𝑛 ∈
ℕ)) |
39 | 1, 38 | syl6bir 164 |
. . . . . . 7
⊢ (((2
· 𝑛) + 1) = 𝑁 → (𝑁 ∈ (ℤ≥‘2)
→ (𝑛 ∈
ℕ0 → 𝑛 ∈ ℕ))) |
40 | 39 | com13 80 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ (𝑁 ∈
(ℤ≥‘2) → (((2 · 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ))) |
41 | 40 | impcom 125 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → (((2
· 𝑛) + 1) = 𝑁 → 𝑛 ∈ ℕ)) |
42 | 41 | pm4.71rd 394 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → (((2
· 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁))) |
43 | 42 | bicomd 141 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
44 | 43 | rexbidva 2474 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘2) → (∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℕ0 ((2
· 𝑛) + 1) = 𝑁)) |
45 | | nnssnn0 9168 |
. . 3
⊢ ℕ
⊆ ℕ0 |
46 | | rexss 3222 |
. . 3
⊢ (ℕ
⊆ ℕ0 → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁))) |
47 | 45, 46 | mp1i 10 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘2) → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2
· 𝑛) + 1) = 𝑁))) |
48 | | eluzge2nn0 9558 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈
ℕ0) |
49 | | oddnn02np1 11868 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (¬ 2 ∥ 𝑁
↔ ∃𝑛 ∈
ℕ0 ((2 · 𝑛) + 1) = 𝑁)) |
50 | 48, 49 | syl 14 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 ·
𝑛) + 1) = 𝑁)) |
51 | 44, 47, 50 | 3bitr4rd 221 |
1
⊢ (𝑁 ∈
(ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁)) |