ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddge22np1 GIF version

Theorem oddge22np1 11578
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
oddge22np1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem oddge22np1
StepHypRef Expression
1 eleq1 2202 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
2 nn0z 9074 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 275 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
4 eluz2 9332 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)))
5 2re 8790 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
65a1i 9 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 2 ∈ ℝ)
7 1red 7781 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → 1 ∈ ℝ)
8 2nn0 8994 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
98a1i 9 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
10 id 19 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
119, 10nn0mulcld 9035 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
1211nn0red 9031 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℝ)
136, 7, 12lesubaddd 8304 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) ↔ 2 ≤ ((2 · 𝑛) + 1)))
14 2m1e1 8838 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
1514breq1i 3936 . . . . . . . . . . . . . . . 16 ((2 − 1) ≤ (2 · 𝑛) ↔ 1 ≤ (2 · 𝑛))
16 nn0re 8986 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
17 2pos 8811 . . . . . . . . . . . . . . . . . . . 20 0 < 2
185, 17pm3.2i 270 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ ∧ 0 < 2)
1918a1i 9 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
20 ledivmul 8635 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑛 ↔ 1 ≤ (2 · 𝑛)))
217, 16, 19, 20syl3anc 1216 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 ↔ 1 ≤ (2 · 𝑛)))
22 halfgt0 8935 . . . . . . . . . . . . . . . . . 18 0 < (1 / 2)
23 0red 7767 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → 0 ∈ ℝ)
24 halfre 8933 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℝ
2524a1i 9 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1 / 2) ∈ ℝ)
26 ltletr 7853 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2723, 25, 16, 26syl3anc 1216 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → ((0 < (1 / 2) ∧ (1 / 2) ≤ 𝑛) → 0 < 𝑛))
2822, 27mpani 426 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1 / 2) ≤ 𝑛 → 0 < 𝑛))
2921, 28sylbird 169 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (1 ≤ (2 · 𝑛) → 0 < 𝑛))
3015, 29syl5bi 151 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → ((2 − 1) ≤ (2 · 𝑛) → 0 < 𝑛))
3113, 30sylbird 169 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2 ≤ ((2 · 𝑛) + 1) → 0 < 𝑛))
3231com12 30 . . . . . . . . . . . . 13 (2 ≤ ((2 · 𝑛) + 1) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
33323ad2ant3 1004 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ ((2 · 𝑛) + 1) ∈ ℤ ∧ 2 ≤ ((2 · 𝑛) + 1)) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
344, 33sylbi 120 . . . . . . . . . . 11 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0 → 0 < 𝑛))
3534imp 123 . . . . . . . . . 10 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 0 < 𝑛)
36 elnnz 9064 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
373, 35, 36sylanbrc 413 . . . . . . . . 9 ((((2 · 𝑛) + 1) ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ)
3837ex 114 . . . . . . . 8 (((2 · 𝑛) + 1) ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ))
391, 38syl6bir 163 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 ∈ (ℤ‘2) → (𝑛 ∈ ℕ0𝑛 ∈ ℕ)))
4039com13 80 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑁 ∈ (ℤ‘2) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ)))
4140impcom 124 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁𝑛 ∈ ℕ))
4241pm4.71rd 391 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4342bicomd 140 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ((2 · 𝑛) + 1) = 𝑁))
4443rexbidva 2434 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁) ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
45 nnssnn0 8980 . . 3 ℕ ⊆ ℕ0
46 rexss 3164 . . 3 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
4745, 46mp1i 10 . 2 (𝑁 ∈ (ℤ‘2) → (∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℕ0 (𝑛 ∈ ℕ ∧ ((2 · 𝑛) + 1) = 𝑁)))
48 eluzge2nn0 9365 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
49 oddnn02np1 11577 . . 3 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
5048, 49syl 14 . 2 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
5144, 47, 503bitr4rd 220 1 (𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wrex 2417  wss 3071   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  2c2 8771  0cn0 8977  cz 9054  cuz 9326  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-dvds 11494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator