ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz3m2nn GIF version

Theorem uz3m2nn 9061
Description: An integer greater than or equal to 3 decreased by 2 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
uz3m2nn (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)

Proof of Theorem uz3m2nn
StepHypRef Expression
1 eluz2 9025 . . 3 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
2 2lt3 8586 . . . . . 6 2 < 3
3 2re 8492 . . . . . . . 8 2 ∈ ℝ
43a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → 2 ∈ ℝ)
5 3re 8496 . . . . . . . 8 3 ∈ ℝ
65a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7 zre 8754 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 ltletr 7574 . . . . . . 7 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
94, 6, 7, 8syl3anc 1174 . . . . . 6 (𝑁 ∈ ℤ → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
102, 9mpani 421 . . . . 5 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
1110imp 122 . . . 4 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
12113adant1 961 . . 3 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
131, 12sylbi 119 . 2 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
14 2nn 8577 . . 3 2 ∈ ℕ
15 eluzge3nn 9060 . . 3 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
16 nnsub 8461 . . 3 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1714, 15, 16sylancr 405 . 2 (𝑁 ∈ (ℤ‘3) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1813, 17mpbid 145 1 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924  wcel 1438   class class class wbr 3845  cfv 5015  (class class class)co 5652  cr 7349   < clt 7522  cle 7523  cmin 7653  cn 8422  2c2 8473  3c3 8474  cz 8750  cuz 9019
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-2 8481  df-3 8482  df-z 8751  df-uz 9020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator