ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz3m2nn GIF version

Theorem uz3m2nn 9647
Description: An integer greater than or equal to 3 decreased by 2 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
uz3m2nn (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)

Proof of Theorem uz3m2nn
StepHypRef Expression
1 eluz2 9607 . . 3 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
2 2lt3 9161 . . . . . 6 2 < 3
3 2re 9060 . . . . . . . 8 2 ∈ ℝ
43a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → 2 ∈ ℝ)
5 3re 9064 . . . . . . . 8 3 ∈ ℝ
65a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7 zre 9330 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 ltletr 8116 . . . . . . 7 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
94, 6, 7, 8syl3anc 1249 . . . . . 6 (𝑁 ∈ ℤ → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
102, 9mpani 430 . . . . 5 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
1110imp 124 . . . 4 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
12113adant1 1017 . . 3 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
131, 12sylbi 121 . 2 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
14 2nn 9152 . . 3 2 ∈ ℕ
15 eluzge3nn 9646 . . 3 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
16 nnsub 9029 . . 3 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1714, 15, 16sylancr 414 . 2 (𝑁 ∈ (ℤ‘3) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1813, 17mpbid 147 1 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cr 7878   < clt 8061  cle 8062  cmin 8197  cn 8990  2c2 9041  3c3 9042  cz 9326  cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-z 9327  df-uz 9602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator