ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le GIF version

Theorem ledivge1le 9801
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 9800 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
21adantr 276 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
3 rerpdivcl 9759 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
43adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
5 1red 8041 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℝ)
6 rpre 9735 . . . . . . . . . . 11 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
76adantl 277 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
8 letr 8109 . . . . . . . . . 10 (((𝐴 / 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
94, 5, 7, 8syl3anc 1249 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
109expd 258 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
112, 10sylbird 170 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
1211com23 78 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (1 ≤ 𝐶 → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1312expimpd 363 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1413ex 115 . . . 4 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ+ → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶))))
15143imp1 1222 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 𝐶)
16 simp1 999 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → 𝐴 ∈ ℝ)
176adantr 276 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 𝐶 ∈ ℝ)
18 0lt1 8153 . . . . . . . . . 10 0 < 1
19 0red 8027 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 0 ∈ ℝ)
20 1red 8041 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 1 ∈ ℝ)
21 ltletr 8116 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2219, 20, 6, 21syl3anc 1249 . . . . . . . . . 10 (𝐶 ∈ ℝ+ → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2318, 22mpani 430 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (1 ≤ 𝐶 → 0 < 𝐶))
2423imp 124 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 0 < 𝐶)
2517, 24jca 306 . . . . . . 7 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
26253ad2ant3 1022 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
27 rpregt0 9742 . . . . . . 7 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
28273ad2ant2 1021 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2916, 26, 283jca 1179 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
3029adantr 276 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
31 lediv23 8920 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3230, 31syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3315, 32mpbird 167 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐶) ≤ 𝐵)
3433ex 115 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   < clt 8061  cle 8062   / cdiv 8699  +crp 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-rp 9729
This theorem is referenced by:  gausslemma2dlem1a  15299
  Copyright terms: Public domain W3C validator