ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le GIF version

Theorem ledivge1le 9662
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 9661 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
21adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
3 rerpdivcl 9620 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
43adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
5 1red 7914 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℝ)
6 rpre 9596 . . . . . . . . . . 11 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
76adantl 275 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
8 letr 7981 . . . . . . . . . 10 (((𝐴 / 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
94, 5, 7, 8syl3anc 1228 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
109expd 256 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
112, 10sylbird 169 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
1211com23 78 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (1 ≤ 𝐶 → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1312expimpd 361 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1413ex 114 . . . 4 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ+ → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶))))
15143imp1 1210 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 𝐶)
16 simp1 987 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → 𝐴 ∈ ℝ)
176adantr 274 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 𝐶 ∈ ℝ)
18 0lt1 8025 . . . . . . . . . 10 0 < 1
19 0red 7900 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 0 ∈ ℝ)
20 1red 7914 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 1 ∈ ℝ)
21 ltletr 7988 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2219, 20, 6, 21syl3anc 1228 . . . . . . . . . 10 (𝐶 ∈ ℝ+ → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2318, 22mpani 427 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (1 ≤ 𝐶 → 0 < 𝐶))
2423imp 123 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 0 < 𝐶)
2517, 24jca 304 . . . . . . 7 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
26253ad2ant3 1010 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
27 rpregt0 9603 . . . . . . 7 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
28273ad2ant2 1009 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2916, 26, 283jca 1167 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
3029adantr 274 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
31 lediv23 8788 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3230, 31syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3315, 32mpbird 166 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐶) ≤ 𝐵)
3433ex 114 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   < clt 7933  cle 7934   / cdiv 8568  +crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-rp 9590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator