ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le GIF version

Theorem ledivge1le 9481
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 9480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
21adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
3 rerpdivcl 9440 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
43adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
5 1red 7749 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℝ)
6 rpre 9416 . . . . . . . . . . 11 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
76adantl 275 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
8 letr 7815 . . . . . . . . . 10 (((𝐴 / 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
94, 5, 7, 8syl3anc 1201 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
109expd 256 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
112, 10sylbird 169 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
1211com23 78 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (1 ≤ 𝐶 → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1312expimpd 360 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1413ex 114 . . . 4 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ+ → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶))))
15143imp1 1183 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 𝐶)
16 simp1 966 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → 𝐴 ∈ ℝ)
176adantr 274 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 𝐶 ∈ ℝ)
18 0lt1 7857 . . . . . . . . . 10 0 < 1
19 0red 7735 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 0 ∈ ℝ)
20 1red 7749 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 1 ∈ ℝ)
21 ltletr 7821 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2219, 20, 6, 21syl3anc 1201 . . . . . . . . . 10 (𝐶 ∈ ℝ+ → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2318, 22mpani 426 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (1 ≤ 𝐶 → 0 < 𝐶))
2423imp 123 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 0 < 𝐶)
2517, 24jca 304 . . . . . . 7 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
26253ad2ant3 989 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
27 rpregt0 9423 . . . . . . 7 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
28273ad2ant2 988 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2916, 26, 283jca 1146 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
3029adantr 274 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
31 lediv23 8619 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3230, 31syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3315, 32mpbird 166 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐶) ≤ 𝐵)
3433ex 114 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 947  wcel 1465   class class class wbr 3899  (class class class)co 5742  cr 7587  0cc0 7588  1c1 7589   < clt 7768  cle 7769   / cdiv 8400  +crp 9409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-rp 9410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator