Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd GIF version

Theorem expnlbnd 10423
 Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 9455 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpap0 9465 . . . 4 (𝐴 ∈ ℝ+𝐴 # 0)
31, 2rerecclapd 8600 . . 3 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
4 expnbnd 10422 . . 3 (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
53, 4syl3an1 1249 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘))
6 rpregt0 9462 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
763ad2ant1 1002 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
87adantr 274 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
9 nnnn0 8991 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
10 reexpcl 10317 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
119, 10sylan2 284 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
1211adantlr 468 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
13 simpll 518 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
14 nnz 9080 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1514adantl 275 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
16 0lt1 7896 . . . . . . . . . 10 0 < 1
17 0re 7773 . . . . . . . . . . 11 0 ∈ ℝ
18 1re 7772 . . . . . . . . . . 11 1 ∈ ℝ
19 lttr 7845 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
2017, 18, 19mp3an12 1305 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
2116, 20mpani 426 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
2221imp 123 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
2322adantr 274 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
24 expgt0 10333 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑘))
2513, 15, 23, 24syl3anc 1216 . . . . . 6 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵𝑘))
2612, 25jca 304 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
27263adantl1 1137 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘)))
28 ltrec1 8653 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵𝑘) ∈ ℝ ∧ 0 < (𝐵𝑘))) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
298, 27, 28syl2anc 408 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵𝑘) ↔ (1 / (𝐵𝑘)) < 𝐴))
3029rexbidva 2434 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴))
315, 30mpbid 146 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   ∈ wcel 1480  ∃wrex 2417   class class class wbr 3929  (class class class)co 5774  ℝcr 7626  0cc0 7627  1c1 7628   < clt 7807   / cdiv 8439  ℕcn 8727  ℕ0cn0 8984  ℤcz 9061  ℝ+crp 9448  ↑cexp 10299 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449  df-seqfrec 10226  df-exp 10300 This theorem is referenced by:  expnlbnd2  10424
 Copyright terms: Public domain W3C validator