![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expnlbnd | GIF version |
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
expnlbnd | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9726 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpap0 9736 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 # 0) | |
3 | 1, 2 | rerecclapd 8853 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
4 | expnbnd 10734 | . . 3 ⊢ (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) | |
5 | 3, 4 | syl3an1 1282 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) |
6 | rpregt0 9733 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | 6 | 3ad2ant1 1020 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
8 | 7 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
9 | nnnn0 9247 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
10 | reexpcl 10627 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑𝑘) ∈ ℝ) | |
11 | 9, 10 | sylan2 286 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
12 | 11 | adantlr 477 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
13 | simpll 527 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ) | |
14 | nnz 9336 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
15 | 14 | adantl 277 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
16 | 0lt1 8146 | . . . . . . . . . 10 ⊢ 0 < 1 | |
17 | 0re 8019 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
18 | 1re 8018 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
19 | lttr 8093 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) | |
20 | 17, 18, 19 | mp3an12 1338 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) |
21 | 16, 20 | mpani 430 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵)) |
22 | 21 | imp 124 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵) |
23 | 22 | adantr 276 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵) |
24 | expgt0 10643 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑘)) | |
25 | 13, 15, 23, 24 | syl3anc 1249 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵↑𝑘)) |
26 | 12, 25 | jca 306 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
27 | 26 | 3adantl1 1155 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
28 | ltrec1 8907 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) | |
29 | 8, 27, 28 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) |
30 | 29 | rexbidva 2491 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴)) |
31 | 5, 30 | mpbid 147 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 < clt 8054 / cdiv 8691 ℕcn 8982 ℕ0cn0 9240 ℤcz 9317 ℝ+crp 9719 ↑cexp 10609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 |
This theorem is referenced by: expnlbnd2 10736 |
Copyright terms: Public domain | W3C validator |