| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expnlbnd | GIF version | ||
| Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| expnlbnd | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9824 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpap0 9834 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 # 0) | |
| 3 | 1, 2 | rerecclapd 8949 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
| 4 | expnbnd 10852 | . . 3 ⊢ (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) | |
| 5 | 3, 4 | syl3an1 1285 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) |
| 6 | rpregt0 9831 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 7 | 6 | 3ad2ant1 1023 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| 9 | nnnn0 9344 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 10 | reexpcl 10745 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑𝑘) ∈ ℝ) | |
| 11 | 9, 10 | sylan2 286 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
| 12 | 11 | adantlr 477 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
| 13 | simpll 527 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ) | |
| 14 | nnz 9433 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 15 | 14 | adantl 277 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
| 16 | 0lt1 8241 | . . . . . . . . . 10 ⊢ 0 < 1 | |
| 17 | 0re 8114 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 18 | 1re 8113 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 19 | lttr 8188 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) | |
| 20 | 17, 18, 19 | mp3an12 1342 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) |
| 21 | 16, 20 | mpani 430 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵)) |
| 22 | 21 | imp 124 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵) |
| 23 | 22 | adantr 276 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵) |
| 24 | expgt0 10761 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑘)) | |
| 25 | 13, 15, 23, 24 | syl3anc 1252 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵↑𝑘)) |
| 26 | 12, 25 | jca 306 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
| 27 | 26 | 3adantl1 1158 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
| 28 | ltrec1 9003 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) | |
| 29 | 8, 27, 28 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) |
| 30 | 29 | rexbidva 2507 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴)) |
| 31 | 5, 30 | mpbid 147 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 983 ∈ wcel 2180 ∃wrex 2489 class class class wbr 4062 (class class class)co 5974 ℝcr 7966 0cc0 7967 1c1 7968 < clt 8149 / cdiv 8787 ℕcn 9078 ℕ0cn0 9337 ℤcz 9414 ℝ+crp 9817 ↑cexp 10727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-rp 9818 df-seqfrec 10637 df-exp 10728 |
| This theorem is referenced by: expnlbnd2 10854 |
| Copyright terms: Public domain | W3C validator |