![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expnlbnd | GIF version |
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
expnlbnd | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9662 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpap0 9672 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 # 0) | |
3 | 1, 2 | rerecclapd 8793 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
4 | expnbnd 10646 | . . 3 ⊢ (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) | |
5 | 3, 4 | syl3an1 1271 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) |
6 | rpregt0 9669 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | 6 | 3ad2ant1 1018 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
8 | 7 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
9 | nnnn0 9185 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
10 | reexpcl 10539 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑𝑘) ∈ ℝ) | |
11 | 9, 10 | sylan2 286 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
12 | 11 | adantlr 477 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
13 | simpll 527 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ) | |
14 | nnz 9274 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
15 | 14 | adantl 277 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
16 | 0lt1 8086 | . . . . . . . . . 10 ⊢ 0 < 1 | |
17 | 0re 7959 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
18 | 1re 7958 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
19 | lttr 8033 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) | |
20 | 17, 18, 19 | mp3an12 1327 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) |
21 | 16, 20 | mpani 430 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵)) |
22 | 21 | imp 124 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵) |
23 | 22 | adantr 276 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵) |
24 | expgt0 10555 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑘)) | |
25 | 13, 15, 23, 24 | syl3anc 1238 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵↑𝑘)) |
26 | 12, 25 | jca 306 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
27 | 26 | 3adantl1 1153 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
28 | ltrec1 8847 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) | |
29 | 8, 27, 28 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) |
30 | 29 | rexbidva 2474 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴)) |
31 | 5, 30 | mpbid 147 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4005 (class class class)co 5877 ℝcr 7812 0cc0 7813 1c1 7814 < clt 7994 / cdiv 8631 ℕcn 8921 ℕ0cn0 9178 ℤcz 9255 ℝ+crp 9655 ↑cexp 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-rp 9656 df-seqfrec 10448 df-exp 10522 |
This theorem is referenced by: expnlbnd2 10648 |
Copyright terms: Public domain | W3C validator |