| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | GIF version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 | ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9016 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nnge1 9032 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 3 | 0lt1 8172 | . . 3 ⊢ 0 < 1 | |
| 4 | 0re 8045 | . . . 4 ⊢ 0 ∈ ℝ | |
| 5 | 1re 8044 | . . . 4 ⊢ 1 ∈ ℝ | |
| 6 | ltletr 8135 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) | |
| 7 | 4, 5, 6 | mp3an12 1338 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) |
| 8 | 3, 7 | mpani 430 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴)) |
| 9 | 1, 2, 8 | sylc 62 | 1 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 1c1 7899 < clt 8080 ≤ cle 8081 ℕcn 9009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-inn 9010 |
| This theorem is referenced by: nnap0 9038 nngt0i 9039 nn2ge 9042 nn1gt1 9043 nnsub 9048 nngt0d 9053 nnrecl 9266 nn0ge0 9293 0mnnnnn0 9300 elnnnn0b 9312 elnnz 9355 elnn0z 9358 ztri3or0 9387 nnm1ge0 9431 gtndiv 9440 elpq 9742 elpqb 9743 nnrp 9757 nnledivrp 9860 fzo1fzo0n0 10278 ubmelfzo 10295 adddivflid 10401 flltdivnn0lt 10413 intfracq 10431 zmodcl 10455 zmodfz 10457 zmodid2 10463 m1modnnsub1 10481 expnnval 10653 nnlesq 10754 facdiv 10849 faclbnd 10852 bc0k 10867 dvdsval3 11975 nndivdvds 11980 moddvds 11983 evennn2n 12067 nnoddm1d2 12094 divalglemnn 12102 ndvdssub 12114 ndvdsadd 12115 modgcd 12185 sqgcd 12223 lcmgcdlem 12272 qredeu 12292 divdenle 12392 hashgcdlem 12433 oddprm 12455 pythagtriplem12 12471 pythagtriplem13 12472 pythagtriplem14 12473 pythagtriplem16 12475 pythagtriplem19 12478 pc2dvds 12526 fldivp1 12544 modsubi 12615 znnen 12642 exmidunben 12670 mulgnn 13334 mulgnegnn 13340 mulgmodid 13369 znf1o 14285 znidomb 14292 lgsval4a 15371 lgsne0 15387 gausslemma2dlem1a 15407 |
| Copyright terms: Public domain | W3C validator |