| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | GIF version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 | ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9105 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nnge1 9121 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 3 | 0lt1 8261 | . . 3 ⊢ 0 < 1 | |
| 4 | 0re 8134 | . . . 4 ⊢ 0 ∈ ℝ | |
| 5 | 1re 8133 | . . . 4 ⊢ 1 ∈ ℝ | |
| 6 | ltletr 8224 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) | |
| 7 | 4, 5, 6 | mp3an12 1361 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) |
| 8 | 3, 7 | mpani 430 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴)) |
| 9 | 1, 2, 8 | sylc 62 | 1 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 class class class wbr 4082 ℝcr 7986 0cc0 7987 1c1 7988 < clt 8169 ≤ cle 8170 ℕcn 9098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4722 df-cnv 4724 df-iota 5274 df-fv 5322 df-ov 5997 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-inn 9099 |
| This theorem is referenced by: nnap0 9127 nngt0i 9128 nn2ge 9131 nn1gt1 9132 nnsub 9137 nngt0d 9142 nnrecl 9355 nn0ge0 9382 0mnnnnn0 9389 elnnnn0b 9401 elnnz 9444 elnn0z 9447 ztri3or0 9476 nnnle0 9483 nnm1ge0 9521 gtndiv 9530 elpq 9832 elpqb 9833 nnrp 9847 nnledivrp 9950 fzo1fzo0n0 10371 ubmelfzo 10393 adddivflid 10499 flltdivnn0lt 10511 intfracq 10529 zmodcl 10553 zmodfz 10555 zmodid2 10561 m1modnnsub1 10579 expnnval 10751 nnlesq 10852 facdiv 10947 faclbnd 10950 bc0k 10965 ccatval21sw 11126 ccats1pfxeqrex 11233 dvdsval3 12288 nndivdvds 12293 moddvds 12296 evennn2n 12380 nnoddm1d2 12407 divalglemnn 12415 ndvdssub 12427 ndvdsadd 12428 modgcd 12498 sqgcd 12536 lcmgcdlem 12585 qredeu 12605 divdenle 12705 hashgcdlem 12746 oddprm 12768 pythagtriplem12 12784 pythagtriplem13 12785 pythagtriplem14 12786 pythagtriplem16 12788 pythagtriplem19 12791 pc2dvds 12839 fldivp1 12857 modsubi 12928 znnen 12955 exmidunben 12983 mulgnn 13649 mulgnegnn 13655 mulgmodid 13684 znf1o 14600 znidomb 14607 lgsval4a 15686 lgsne0 15702 gausslemma2dlem1a 15722 |
| Copyright terms: Public domain | W3C validator |