| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | GIF version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 | ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9125 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nnge1 9141 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 3 | 0lt1 8281 | . . 3 ⊢ 0 < 1 | |
| 4 | 0re 8154 | . . . 4 ⊢ 0 ∈ ℝ | |
| 5 | 1re 8153 | . . . 4 ⊢ 1 ∈ ℝ | |
| 6 | ltletr 8244 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) | |
| 7 | 4, 5, 6 | mp3an12 1361 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) |
| 8 | 3, 7 | mpani 430 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴)) |
| 9 | 1, 2, 8 | sylc 62 | 1 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 0cc0 8007 1c1 8008 < clt 8189 ≤ cle 8190 ℕcn 9118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-inn 9119 |
| This theorem is referenced by: nnap0 9147 nngt0i 9148 nn2ge 9151 nn1gt1 9152 nnsub 9157 nngt0d 9162 nnrecl 9375 nn0ge0 9402 0mnnnnn0 9409 elnnnn0b 9421 elnnz 9464 elnn0z 9467 ztri3or0 9496 nnnle0 9503 nnm1ge0 9541 gtndiv 9550 elpq 9852 elpqb 9853 nnrp 9867 nnledivrp 9970 fzo1fzo0n0 10391 ubmelfzo 10414 adddivflid 10520 flltdivnn0lt 10532 intfracq 10550 zmodcl 10574 zmodfz 10576 zmodid2 10582 m1modnnsub1 10600 expnnval 10772 nnlesq 10873 facdiv 10968 faclbnd 10971 bc0k 10986 ccatval21sw 11148 ccats1pfxeqrex 11255 dvdsval3 12310 nndivdvds 12315 moddvds 12318 evennn2n 12402 nnoddm1d2 12429 divalglemnn 12437 ndvdssub 12449 ndvdsadd 12450 modgcd 12520 sqgcd 12558 lcmgcdlem 12607 qredeu 12627 divdenle 12727 hashgcdlem 12768 oddprm 12790 pythagtriplem12 12806 pythagtriplem13 12807 pythagtriplem14 12808 pythagtriplem16 12810 pythagtriplem19 12813 pc2dvds 12861 fldivp1 12879 modsubi 12950 znnen 12977 exmidunben 13005 mulgnn 13671 mulgnegnn 13677 mulgmodid 13706 znf1o 14623 znidomb 14630 lgsval4a 15709 lgsne0 15725 gausslemma2dlem1a 15745 |
| Copyright terms: Public domain | W3C validator |