Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nngt0 | GIF version |
Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
Ref | Expression |
---|---|
nngt0 | ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8864 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | nnge1 8880 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 0lt1 8025 | . . 3 ⊢ 0 < 1 | |
4 | 0re 7899 | . . . 4 ⊢ 0 ∈ ℝ | |
5 | 1re 7898 | . . . 4 ⊢ 1 ∈ ℝ | |
6 | ltletr 7988 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) | |
7 | 4, 5, 6 | mp3an12 1317 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) |
8 | 3, 7 | mpani 427 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴)) |
9 | 1, 2, 8 | sylc 62 | 1 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 1c1 7754 < clt 7933 ≤ cle 7934 ℕcn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 |
This theorem is referenced by: nnap0 8886 nngt0i 8887 nn2ge 8890 nn1gt1 8891 nnsub 8896 nngt0d 8901 nnrecl 9112 nn0ge0 9139 0mnnnnn0 9146 elnnnn0b 9158 elnnz 9201 elnn0z 9204 ztri3or0 9233 nnm1ge0 9277 gtndiv 9286 elpq 9586 elpqb 9587 nnrp 9599 nnledivrp 9702 fzo1fzo0n0 10118 ubmelfzo 10135 adddivflid 10227 flltdivnn0lt 10239 intfracq 10255 zmodcl 10279 zmodfz 10281 zmodid2 10287 m1modnnsub1 10305 expnnval 10458 nnlesq 10558 facdiv 10651 faclbnd 10654 bc0k 10669 dvdsval3 11731 nndivdvds 11736 moddvds 11739 evennn2n 11820 nnoddm1d2 11847 divalglemnn 11855 ndvdssub 11867 ndvdsadd 11868 modgcd 11924 sqgcd 11962 lcmgcdlem 12009 qredeu 12029 divdenle 12129 hashgcdlem 12170 oddprm 12191 pythagtriplem12 12207 pythagtriplem13 12208 pythagtriplem14 12209 pythagtriplem16 12211 pythagtriplem19 12214 pc2dvds 12261 fldivp1 12278 znnen 12331 exmidunben 12359 lgsval4a 13563 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |