Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nngt0 | GIF version |
Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
Ref | Expression |
---|---|
nngt0 | ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8885 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | nnge1 8901 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 0lt1 8046 | . . 3 ⊢ 0 < 1 | |
4 | 0re 7920 | . . . 4 ⊢ 0 ∈ ℝ | |
5 | 1re 7919 | . . . 4 ⊢ 1 ∈ ℝ | |
6 | ltletr 8009 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) | |
7 | 4, 5, 6 | mp3an12 1322 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) |
8 | 3, 7 | mpani 428 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴)) |
9 | 1, 2, 8 | sylc 62 | 1 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 1c1 7775 < clt 7954 ≤ cle 7955 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 |
This theorem is referenced by: nnap0 8907 nngt0i 8908 nn2ge 8911 nn1gt1 8912 nnsub 8917 nngt0d 8922 nnrecl 9133 nn0ge0 9160 0mnnnnn0 9167 elnnnn0b 9179 elnnz 9222 elnn0z 9225 ztri3or0 9254 nnm1ge0 9298 gtndiv 9307 elpq 9607 elpqb 9608 nnrp 9620 nnledivrp 9723 fzo1fzo0n0 10139 ubmelfzo 10156 adddivflid 10248 flltdivnn0lt 10260 intfracq 10276 zmodcl 10300 zmodfz 10302 zmodid2 10308 m1modnnsub1 10326 expnnval 10479 nnlesq 10579 facdiv 10672 faclbnd 10675 bc0k 10690 dvdsval3 11753 nndivdvds 11758 moddvds 11761 evennn2n 11842 nnoddm1d2 11869 divalglemnn 11877 ndvdssub 11889 ndvdsadd 11890 modgcd 11946 sqgcd 11984 lcmgcdlem 12031 qredeu 12051 divdenle 12151 hashgcdlem 12192 oddprm 12213 pythagtriplem12 12229 pythagtriplem13 12230 pythagtriplem14 12231 pythagtriplem16 12233 pythagtriplem19 12236 pc2dvds 12283 fldivp1 12300 znnen 12353 exmidunben 12381 lgsval4a 13717 lgsne0 13733 |
Copyright terms: Public domain | W3C validator |