Proof of Theorem recreclt
| Step | Hyp | Ref
 | Expression | 
| 1 |   | recgt0 8877 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (1 / 𝐴)) | 
| 2 |   | simpl 109 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℝ) | 
| 3 |   | gt0ap0 8653 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 # 0) | 
| 4 | 2, 3 | rerecclapd 8861 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) | 
| 5 |   | 1re 8025 | 
. . . . 5
⊢ 1 ∈
ℝ | 
| 6 |   | ltaddpos 8479 | 
. . . . 5
⊢ (((1 /
𝐴) ∈ ℝ ∧ 1
∈ ℝ) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴)))) | 
| 7 | 4, 5, 6 | sylancl 413 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < (1 /
𝐴) ↔ 1 < (1 + (1 /
𝐴)))) | 
| 8 | 1, 7 | mpbid 147 | 
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 1 < (1 + (1 /
𝐴))) | 
| 9 |   | readdcl 8005 | 
. . . . 5
⊢ ((1
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 + (1 / 𝐴)) ∈
ℝ) | 
| 10 | 5, 4, 9 | sylancr 414 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 + (1 / 𝐴)) ∈
ℝ) | 
| 11 |   | 0lt1 8153 | 
. . . . . 6
⊢ 0 <
1 | 
| 12 |   | 0re 8026 | 
. . . . . . . 8
⊢ 0 ∈
ℝ | 
| 13 |   | lttr 8100 | 
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + (1 / 𝐴)) ∈ ℝ) → ((0 < 1 ∧ 1
< (1 + (1 / 𝐴))) →
0 < (1 + (1 / 𝐴)))) | 
| 14 | 12, 5, 13 | mp3an12 1338 | 
. . . . . . 7
⊢ ((1 + (1
/ 𝐴)) ∈ ℝ →
((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴)))) | 
| 15 | 10, 14 | syl 14 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((0 < 1 ∧
1 < (1 + (1 / 𝐴)))
→ 0 < (1 + (1 / 𝐴)))) | 
| 16 | 11, 15 | mpani 430 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 < (1 + (1 /
𝐴)) → 0 < (1 + (1 /
𝐴)))) | 
| 17 | 8, 16 | mpd 13 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (1 + (1 /
𝐴))) | 
| 18 |   | recgt1 8924 | 
. . . 4
⊢ (((1 + (1
/ 𝐴)) ∈ ℝ ∧
0 < (1 + (1 / 𝐴)))
→ (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1)) | 
| 19 | 10, 17, 18 | syl2anc 411 | 
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 < (1 + (1 /
𝐴)) ↔ (1 / (1 + (1 /
𝐴))) <
1)) | 
| 20 | 8, 19 | mpbid 147 | 
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / (1 + (1 /
𝐴))) <
1) | 
| 21 |   | ltaddpos 8479 | 
. . . . . 6
⊢ ((1
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < 1 ↔ (1
/ 𝐴) < ((1 / 𝐴) + 1))) | 
| 22 | 5, 4, 21 | sylancr 414 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < 1 ↔
(1 / 𝐴) < ((1 / 𝐴) + 1))) | 
| 23 | 11, 22 | mpbii 148 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) < ((1 / 𝐴) + 1)) | 
| 24 | 4 | recnd 8055 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℂ) | 
| 25 |   | ax-1cn 7972 | 
. . . . 5
⊢ 1 ∈
ℂ | 
| 26 |   | addcom 8163 | 
. . . . 5
⊢ (((1 /
𝐴) ∈ ℂ ∧ 1
∈ ℂ) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴))) | 
| 27 | 24, 25, 26 | sylancl 413 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴))) | 
| 28 | 23, 27 | breqtrd 4059 | 
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) < (1 + (1 / 𝐴))) | 
| 29 |   | simpr 110 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < 𝐴) | 
| 30 |   | ltrec1 8915 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ ((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 <
(1 + (1 / 𝐴)))) → ((1
/ 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴)) | 
| 31 | 2, 29, 10, 17, 30 | syl22anc 1250 | 
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴)) | 
| 32 | 28, 31 | mpbid 147 | 
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / (1 + (1 /
𝐴))) < 𝐴) | 
| 33 | 20, 32 | jca 306 | 
1
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / (1 + (1 /
𝐴))) < 1 ∧ (1 / (1 +
(1 / 𝐴))) < 𝐴)) |