Step | Hyp | Ref
| Expression |
1 | | phival 12145 |
. 2
⊢ (𝑁 ∈ ℕ →
(ϕ‘𝑁) =
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
2 | | phivalfi 12144 |
. . . . 5
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) |
3 | | hashcl 10694 |
. . . . 5
⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈
ℕ0) |
4 | 2, 3 | syl 14 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈
ℕ0) |
5 | 4 | nn0zd 9311 |
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ) |
6 | | 1z 9217 |
. . . . 5
⊢ 1 ∈
ℤ |
7 | | hashsng 10711 |
. . . . 5
⊢ (1 ∈
ℤ → (♯‘{1}) = 1) |
8 | 6, 7 | ax-mp 5 |
. . . 4
⊢
(♯‘{1}) = 1 |
9 | | eluzfz1 9966 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
10 | | nnuz 9501 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
11 | 9, 10 | eleq2s 2261 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 1 ∈
(1...𝑁)) |
12 | | nnz 9210 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
13 | | 1gcd 11925 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (1 gcd
𝑁) = 1) |
14 | 12, 13 | syl 14 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (1 gcd
𝑁) = 1) |
15 | | oveq1 5849 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑥 gcd 𝑁) = (1 gcd 𝑁)) |
16 | 15 | eqeq1d 2174 |
. . . . . . . . 9
⊢ (𝑥 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (1 gcd 𝑁) = 1)) |
17 | 16 | elrab 2882 |
. . . . . . . 8
⊢ (1 ∈
{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ↔ (1 ∈ (1...𝑁) ∧ (1 gcd 𝑁) = 1)) |
18 | 11, 14, 17 | sylanbrc 414 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∈
{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
19 | 18 | snssd 3718 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → {1}
⊆ {𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
20 | | ssdomg 6744 |
. . . . . 6
⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin → ({1} ⊆ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} → {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
21 | 2, 19, 20 | sylc 62 |
. . . . 5
⊢ (𝑁 ∈ ℕ → {1}
≼ {𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
22 | | 1nn 8868 |
. . . . . . 7
⊢ 1 ∈
ℕ |
23 | | snfig 6780 |
. . . . . . 7
⊢ (1 ∈
ℕ → {1} ∈ Fin) |
24 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢ {1}
∈ Fin |
25 | | fihashdom 10716 |
. . . . . 6
⊢ (({1}
∈ Fin ∧ {𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) →
((♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ↔ {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
26 | 24, 2, 25 | sylancr 411 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ↔ {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
27 | 21, 26 | mpbird 166 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
28 | 8, 27 | eqbrtrrid 4018 |
. . 3
⊢ (𝑁 ∈ ℕ → 1 ≤
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
29 | | 1zzd 9218 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∈
ℤ) |
30 | 29, 12 | fzfigd 10366 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(1...𝑁) ∈
Fin) |
31 | | ssrab2 3227 |
. . . . . 6
⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) |
32 | | ssdomg 6744 |
. . . . . 6
⊢
((1...𝑁) ∈ Fin
→ ({𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁))) |
33 | 30, 31, 32 | mpisyl 1434 |
. . . . 5
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁)) |
34 | | fihashdom 10716 |
. . . . . 6
⊢ (({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin ∧ (1...𝑁) ∈ Fin) →
((♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁)) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁))) |
35 | 2, 30, 34 | syl2anc 409 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁)) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁))) |
36 | 33, 35 | mpbird 166 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁))) |
37 | | nnnn0 9121 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
38 | | hashfz1 10696 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
39 | 37, 38 | syl 14 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(♯‘(1...𝑁)) =
𝑁) |
40 | 36, 39 | breqtrd 4008 |
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁) |
41 | | elfz1 9949 |
. . . 4
⊢ ((1
∈ ℤ ∧ 𝑁
∈ ℤ) → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁) ↔ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ ∧ 1 ≤
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∧ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁))) |
42 | 6, 12, 41 | sylancr 411 |
. . 3
⊢ (𝑁 ∈ ℕ →
((♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁) ↔ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ ∧ 1 ≤
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∧ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁))) |
43 | 5, 28, 40, 42 | mpbir3and 1170 |
. 2
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁)) |
44 | 1, 43 | eqeltrd 2243 |
1
⊢ (𝑁 ∈ ℕ →
(ϕ‘𝑁) ∈
(1...𝑁)) |