Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djudoml | GIF version |
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
djudoml | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7024 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | 1 | funmpt2 5237 | . . . 4 ⊢ Fun inl |
3 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
4 | resfunexg 5717 | . . . 4 ⊢ ((Fun inl ∧ 𝐴 ∈ 𝑉) → (inl ↾ 𝐴) ∈ V) | |
5 | 2, 3, 4 | sylancr 412 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl ↾ 𝐴) ∈ V) |
6 | inlresf1 7038 | . . 3 ⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) | |
7 | f1eq1 5398 | . . . 4 ⊢ (𝑓 = (inl ↾ 𝐴) → (𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵) ↔ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
8 | 7 | spcegv 2818 | . . 3 ⊢ ((inl ↾ 𝐴) ∈ V → ((inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
9 | 5, 6, 8 | mpisyl 1439 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵)) |
10 | djuex 7020 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
11 | brdomg 6726 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
13 | 9, 12 | mpbird 166 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ∅c0 3414 〈cop 3586 class class class wbr 3989 ↾ cres 4613 Fun wfun 5192 –1-1→wf1 5195 ≼ cdom 6717 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dom 6720 df-dju 7015 df-inl 7024 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |