ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudoml GIF version

Theorem djudoml 7221
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudoml ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))

Proof of Theorem djudoml
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7049 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
21funmpt2 5257 . . . 4 Fun inl
3 simpl 109 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
4 resfunexg 5740 . . . 4 ((Fun inl ∧ 𝐴𝑉) → (inl ↾ 𝐴) ∈ V)
52, 3, 4sylancr 414 . . 3 ((𝐴𝑉𝐵𝑊) → (inl ↾ 𝐴) ∈ V)
6 inlresf1 7063 . . 3 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
7 f1eq1 5418 . . . 4 (𝑓 = (inl ↾ 𝐴) → (𝑓:𝐴1-1→(𝐴𝐵) ↔ (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)))
87spcegv 2827 . . 3 ((inl ↾ 𝐴) ∈ V → ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
95, 6, 8mpisyl 1446 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵))
10 djuex 7045 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
11 brdomg 6751 . . 3 ((𝐴𝐵) ∈ V → (𝐴 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
1210, 11syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
139, 12mpbird 167 1 ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1492  wcel 2148  Vcvv 2739  c0 3424  cop 3597   class class class wbr 4005  cres 4630  Fun wfun 5212  1-1wf1 5215  cdom 6742  cdju 7039  inlcinl 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6144  df-2nd 6145  df-1o 6420  df-dom 6745  df-dju 7040  df-inl 7049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator