| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudoml | GIF version | ||
| Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| djudoml | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 7161 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | 1 | funmpt2 5316 | . . . 4 ⊢ Fun inl |
| 3 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 4 | resfunexg 5815 | . . . 4 ⊢ ((Fun inl ∧ 𝐴 ∈ 𝑉) → (inl ↾ 𝐴) ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl ↾ 𝐴) ∈ V) |
| 6 | inlresf1 7175 | . . 3 ⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) | |
| 7 | f1eq1 5485 | . . . 4 ⊢ (𝑓 = (inl ↾ 𝐴) → (𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵) ↔ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
| 8 | 7 | spcegv 2863 | . . 3 ⊢ ((inl ↾ 𝐴) ∈ V → ((inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
| 9 | 5, 6, 8 | mpisyl 1467 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵)) |
| 10 | djuex 7157 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 11 | brdomg 6847 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
| 13 | 9, 12 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ∅c0 3462 〈cop 3638 class class class wbr 4048 ↾ cres 4682 Fun wfun 5271 –1-1→wf1 5274 ≼ cdom 6836 ⊔ cdju 7151 inlcinl 7159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1st 6236 df-2nd 6237 df-1o 6512 df-dom 6839 df-dju 7152 df-inl 7161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |