![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djudoml | GIF version |
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
djudoml | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7049 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩) | |
2 | 1 | funmpt2 5257 | . . . 4 ⊢ Fun inl |
3 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
4 | resfunexg 5740 | . . . 4 ⊢ ((Fun inl ∧ 𝐴 ∈ 𝑉) → (inl ↾ 𝐴) ∈ V) | |
5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl ↾ 𝐴) ∈ V) |
6 | inlresf1 7063 | . . 3 ⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) | |
7 | f1eq1 5418 | . . . 4 ⊢ (𝑓 = (inl ↾ 𝐴) → (𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵) ↔ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
8 | 7 | spcegv 2827 | . . 3 ⊢ ((inl ↾ 𝐴) ∈ V → ((inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
9 | 5, 6, 8 | mpisyl 1446 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵)) |
10 | djuex 7045 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
11 | brdomg 6751 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
13 | 9, 12 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ∅c0 3424 ⟨cop 3597 class class class wbr 4005 ↾ cres 4630 Fun wfun 5212 –1-1→wf1 5215 ≼ cdom 6742 ⊔ cdju 7039 inlcinl 7047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6144 df-2nd 6145 df-1o 6420 df-dom 6745 df-dju 7040 df-inl 7049 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |