ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudoml GIF version

Theorem djudoml 7286
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudoml ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))

Proof of Theorem djudoml
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7113 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
21funmpt2 5297 . . . 4 Fun inl
3 simpl 109 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
4 resfunexg 5783 . . . 4 ((Fun inl ∧ 𝐴𝑉) → (inl ↾ 𝐴) ∈ V)
52, 3, 4sylancr 414 . . 3 ((𝐴𝑉𝐵𝑊) → (inl ↾ 𝐴) ∈ V)
6 inlresf1 7127 . . 3 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
7 f1eq1 5458 . . . 4 (𝑓 = (inl ↾ 𝐴) → (𝑓:𝐴1-1→(𝐴𝐵) ↔ (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)))
87spcegv 2852 . . 3 ((inl ↾ 𝐴) ∈ V → ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
95, 6, 8mpisyl 1457 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵))
10 djuex 7109 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
11 brdomg 6807 . . 3 ((𝐴𝐵) ∈ V → (𝐴 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
1210, 11syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
139, 12mpbird 167 1 ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1506  wcel 2167  Vcvv 2763  c0 3450  cop 3625   class class class wbr 4033  cres 4665  Fun wfun 5252  1-1wf1 5255  cdom 6798  cdju 7103  inlcinl 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dom 6801  df-dju 7104  df-inl 7113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator