| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudoml | GIF version | ||
| Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| djudoml | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 7222 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | 1 | funmpt2 5357 | . . . 4 ⊢ Fun inl |
| 3 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 4 | resfunexg 5864 | . . . 4 ⊢ ((Fun inl ∧ 𝐴 ∈ 𝑉) → (inl ↾ 𝐴) ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl ↾ 𝐴) ∈ V) |
| 6 | inlresf1 7236 | . . 3 ⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) | |
| 7 | f1eq1 5528 | . . . 4 ⊢ (𝑓 = (inl ↾ 𝐴) → (𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵) ↔ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
| 8 | 7 | spcegv 2891 | . . 3 ⊢ ((inl ↾ 𝐴) ∈ V → ((inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
| 9 | 5, 6, 8 | mpisyl 1489 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵)) |
| 10 | djuex 7218 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 11 | brdomg 6905 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1→(𝐴 ⊔ 𝐵))) |
| 13 | 9, 12 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 〈cop 3669 class class class wbr 4083 ↾ cres 4721 Fun wfun 5312 –1-1→wf1 5315 ≼ cdom 6894 ⊔ cdju 7212 inlcinl 7220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6292 df-2nd 6293 df-1o 6568 df-dom 6897 df-dju 7213 df-inl 7222 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |