ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudoml GIF version

Theorem djudoml 7344
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudoml ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))

Proof of Theorem djudoml
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7161 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
21funmpt2 5316 . . . 4 Fun inl
3 simpl 109 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
4 resfunexg 5815 . . . 4 ((Fun inl ∧ 𝐴𝑉) → (inl ↾ 𝐴) ∈ V)
52, 3, 4sylancr 414 . . 3 ((𝐴𝑉𝐵𝑊) → (inl ↾ 𝐴) ∈ V)
6 inlresf1 7175 . . 3 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
7 f1eq1 5485 . . . 4 (𝑓 = (inl ↾ 𝐴) → (𝑓:𝐴1-1→(𝐴𝐵) ↔ (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)))
87spcegv 2863 . . 3 ((inl ↾ 𝐴) ∈ V → ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
95, 6, 8mpisyl 1467 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵))
10 djuex 7157 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
11 brdomg 6847 . . 3 ((𝐴𝐵) ∈ V → (𝐴 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
1210, 11syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐴1-1→(𝐴𝐵)))
139, 12mpbird 167 1 ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1516  wcel 2177  Vcvv 2773  c0 3462  cop 3638   class class class wbr 4048  cres 4682  Fun wfun 5271  1-1wf1 5274  cdom 6836  cdju 7151  inlcinl 7159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1st 6236  df-2nd 6237  df-1o 6512  df-dom 6839  df-dju 7152  df-inl 7161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator