ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpisyl Unicode version

Theorem mpisyl 1489
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.)
Hypotheses
Ref Expression
mpisyl.1  |-  ( ph  ->  ps )
mpisyl.2  |-  ch
mpisyl.3  |-  ( ps 
->  ( ch  ->  th )
)
Assertion
Ref Expression
mpisyl  |-  ( ph  ->  th )

Proof of Theorem mpisyl
StepHypRef Expression
1 mpisyl.1 . 2  |-  ( ph  ->  ps )
2 mpisyl.2 . . 3  |-  ch
3 mpisyl.3 . . 3  |-  ( ps 
->  ( ch  ->  th )
)
42, 3mpi 15 . 2  |-  ( ps 
->  th )
51, 4syl 14 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ceqsex  2838  reusv1  4548  iotaexab  5296  fliftcnv  5918  fliftfun  5919  tfrlemibfn  6472  tfr1onlembfn  6488  tfrcllembfn  6501  cnvct  6960  ordiso  7199  exmidomni  7305  djudoml  7397  djudomr  7398  uzsinds  10661  fimaxq  11044  ltoddhalfle  12399  phicl2  12731  strsetsid  13060  txdis1cn  14946  xmeter  15104  2lgslem1  15764  usgredg2v  16016  subctctexmid  16325
  Copyright terms: Public domain W3C validator