ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpisyl Unicode version

Theorem mpisyl 1465
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.)
Hypotheses
Ref Expression
mpisyl.1  |-  ( ph  ->  ps )
mpisyl.2  |-  ch
mpisyl.3  |-  ( ps 
->  ( ch  ->  th )
)
Assertion
Ref Expression
mpisyl  |-  ( ph  ->  th )

Proof of Theorem mpisyl
StepHypRef Expression
1 mpisyl.1 . 2  |-  ( ph  ->  ps )
2 mpisyl.2 . . 3  |-  ch
3 mpisyl.3 . . 3  |-  ( ps 
->  ( ch  ->  th )
)
42, 3mpi 15 . 2  |-  ( ps 
->  th )
51, 4syl 14 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ceqsex  2809  reusv1  4503  iotaexab  5247  fliftcnv  5854  fliftfun  5855  tfrlemibfn  6404  tfr1onlembfn  6420  tfrcllembfn  6433  cnvct  6886  ordiso  7120  exmidomni  7226  djudoml  7313  djudomr  7314  uzsinds  10570  fimaxq  10953  ltoddhalfle  12123  phicl2  12455  strsetsid  12784  txdis1cn  14668  xmeter  14826  2lgslem1  15486  subctctexmid  15801
  Copyright terms: Public domain W3C validator