ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibfn GIF version

Theorem tfrlemibfn 6414
Description: The union of 𝐵 is a function defined on 𝑥. Lemma for tfrlemi1 6418. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemibfn (𝜑 𝐵 Fn 𝑥)
Distinct variable groups:   𝑓,𝑔,,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑤,𝐵,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemibfn
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . . . 6 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . . . 6 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . . . 6 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . . . 6 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibacc 6412 . . . . 5 (𝜑𝐵𝐴)
76unissd 3874 . . . 4 (𝜑 𝐵 𝐴)
81recsfval 6401 . . . 4 recs(𝐹) = 𝐴
97, 8sseqtrrdi 3242 . . 3 (𝜑 𝐵 ⊆ recs(𝐹))
101tfrlem7 6403 . . 3 Fun recs(𝐹)
11 funss 5290 . . 3 ( 𝐵 ⊆ recs(𝐹) → (Fun recs(𝐹) → Fun 𝐵))
129, 10, 11mpisyl 1466 . 2 (𝜑 → Fun 𝐵)
13 simpr3 1008 . . . . . . . . . . . 12 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
142ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
154ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑥 ∈ On)
16 simplr 528 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑧𝑥)
17 onelon 4431 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
1815, 16, 17syl2anc 411 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑧 ∈ On)
19 simpr1 1006 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑔 Fn 𝑧)
20 simpr2 1007 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑔𝐴)
211, 14, 18, 19, 20tfrlemisucfn 6410 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
22 dffn2 5427 . . . . . . . . . . . . . . . 16 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}):suc 𝑧⟶V)
2321, 22sylib 122 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}):suc 𝑧⟶V)
24 fssxp 5443 . . . . . . . . . . . . . . 15 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}):suc 𝑧⟶V → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (suc 𝑧 × V))
2523, 24syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (suc 𝑧 × V))
26 eloni 4422 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → Ord 𝑥)
2715, 26syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → Ord 𝑥)
28 ordsucss 4552 . . . . . . . . . . . . . . . 16 (Ord 𝑥 → (𝑧𝑥 → suc 𝑧𝑥))
2927, 16, 28sylc 62 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → suc 𝑧𝑥)
30 xpss1 4785 . . . . . . . . . . . . . . 15 (suc 𝑧𝑥 → (suc 𝑧 × V) ⊆ (𝑥 × V))
3129, 30syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (suc 𝑧 × V) ⊆ (𝑥 × V))
3225, 31sstrd 3203 . . . . . . . . . . . . 13 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V))
33 vex 2775 . . . . . . . . . . . . . . . 16 𝑔 ∈ V
34 vex 2775 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
352tfrlem3-2d 6398 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
3635simprd 114 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝑔) ∈ V)
37 opexg 4272 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
3834, 36, 37sylancr 414 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
39 snexg 4228 . . . . . . . . . . . . . . . . 17 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
4038, 39syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
41 unexg 4490 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐹𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
4233, 40, 41sylancr 414 . . . . . . . . . . . . . . 15 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
43 elpwg 3624 . . . . . . . . . . . . . . 15 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V) ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V)))
4442, 43syl 14 . . . . . . . . . . . . . 14 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V) ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V)))
4544ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V) ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V)))
4632, 45mpbird 167 . . . . . . . . . . . 12 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V))
4713, 46eqeltrd 2282 . . . . . . . . . . 11 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → ∈ 𝒫 (𝑥 × V))
4847ex 115 . . . . . . . . . 10 ((𝜑𝑧𝑥) → ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∈ 𝒫 (𝑥 × V)))
4948exlimdv 1842 . . . . . . . . 9 ((𝜑𝑧𝑥) → (∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∈ 𝒫 (𝑥 × V)))
5049rexlimdva 2623 . . . . . . . 8 (𝜑 → (∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∈ 𝒫 (𝑥 × V)))
5150abssdv 3267 . . . . . . 7 (𝜑 → { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))} ⊆ 𝒫 (𝑥 × V))
523, 51eqsstrid 3239 . . . . . 6 (𝜑𝐵 ⊆ 𝒫 (𝑥 × V))
53 sspwuni 4012 . . . . . 6 (𝐵 ⊆ 𝒫 (𝑥 × V) ↔ 𝐵 ⊆ (𝑥 × V))
5452, 53sylib 122 . . . . 5 (𝜑 𝐵 ⊆ (𝑥 × V))
55 dmss 4877 . . . . 5 ( 𝐵 ⊆ (𝑥 × V) → dom 𝐵 ⊆ dom (𝑥 × V))
5654, 55syl 14 . . . 4 (𝜑 → dom 𝐵 ⊆ dom (𝑥 × V))
57 dmxpss 5113 . . . 4 dom (𝑥 × V) ⊆ 𝑥
5856, 57sstrdi 3205 . . 3 (𝜑 → dom 𝐵𝑥)
591, 2, 3, 4, 5tfrlemibxssdm 6413 . . 3 (𝜑𝑥 ⊆ dom 𝐵)
6058, 59eqssd 3210 . 2 (𝜑 → dom 𝐵 = 𝑥)
61 df-fn 5274 . 2 ( 𝐵 Fn 𝑥 ↔ (Fun 𝐵 ∧ dom 𝐵 = 𝑥))
6212, 60, 61sylanbrc 417 1 (𝜑 𝐵 Fn 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wral 2484  wrex 2485  Vcvv 2772  cun 3164  wss 3166  𝒫 cpw 3616  {csn 3633  cop 3636   cuni 3850  Ord word 4409  Oncon0 4410  suc csuc 4412   × cxp 4673  dom cdm 4675  cres 4677  Fun wfun 5265   Fn wfn 5266  wf 5267  cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-recs 6391
This theorem is referenced by:  tfrlemibex  6415  tfrlemiubacc  6416  tfrlemiex  6417
  Copyright terms: Public domain W3C validator