ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibfn GIF version

Theorem tfrlemibfn 6107
Description: The union of 𝐵 is a function defined on 𝑥. Lemma for tfrlemi1 6111. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemibfn (𝜑 𝐵 Fn 𝑥)
Distinct variable groups:   𝑓,𝑔,,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑤,𝐵,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemibfn
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . . . 6 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . . . 6 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . . . 6 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . . . 6 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibacc 6105 . . . . 5 (𝜑𝐵𝐴)
76unissd 3683 . . . 4 (𝜑 𝐵 𝐴)
81recsfval 6094 . . . 4 recs(𝐹) = 𝐴
97, 8syl6sseqr 3074 . . 3 (𝜑 𝐵 ⊆ recs(𝐹))
101tfrlem7 6096 . . 3 Fun recs(𝐹)
11 funss 5047 . . 3 ( 𝐵 ⊆ recs(𝐹) → (Fun recs(𝐹) → Fun 𝐵))
129, 10, 11mpisyl 1381 . 2 (𝜑 → Fun 𝐵)
13 simpr3 952 . . . . . . . . . . . 12 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
142ad2antrr 473 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
154ad2antrr 473 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑥 ∈ On)
16 simplr 498 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑧𝑥)
17 onelon 4220 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
1815, 16, 17syl2anc 404 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑧 ∈ On)
19 simpr1 950 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑔 Fn 𝑧)
20 simpr2 951 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑔𝐴)
211, 14, 18, 19, 20tfrlemisucfn 6103 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
22 dffn2 5176 . . . . . . . . . . . . . . . 16 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}):suc 𝑧⟶V)
2321, 22sylib 121 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}):suc 𝑧⟶V)
24 fssxp 5191 . . . . . . . . . . . . . . 15 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}):suc 𝑧⟶V → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (suc 𝑧 × V))
2523, 24syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (suc 𝑧 × V))
26 eloni 4211 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → Ord 𝑥)
2715, 26syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → Ord 𝑥)
28 ordsucss 4334 . . . . . . . . . . . . . . . 16 (Ord 𝑥 → (𝑧𝑥 → suc 𝑧𝑥))
2927, 16, 28sylc 62 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → suc 𝑧𝑥)
30 xpss1 4561 . . . . . . . . . . . . . . 15 (suc 𝑧𝑥 → (suc 𝑧 × V) ⊆ (𝑥 × V))
3129, 30syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (suc 𝑧 × V) ⊆ (𝑥 × V))
3225, 31sstrd 3036 . . . . . . . . . . . . 13 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V))
33 vex 2623 . . . . . . . . . . . . . . . 16 𝑔 ∈ V
34 vex 2623 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
352tfrlem3-2d 6091 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
3635simprd 113 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝑔) ∈ V)
37 opexg 4064 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
3834, 36, 37sylancr 406 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
39 snexg 4025 . . . . . . . . . . . . . . . . 17 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
4038, 39syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
41 unexg 4278 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐹𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
4233, 40, 41sylancr 406 . . . . . . . . . . . . . . 15 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
43 elpwg 3441 . . . . . . . . . . . . . . 15 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V) ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V)))
4442, 43syl 14 . . . . . . . . . . . . . 14 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V) ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V)))
4544ad2antrr 473 . . . . . . . . . . . . 13 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V) ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ⊆ (𝑥 × V)))
4632, 45mpbird 166 . . . . . . . . . . . 12 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝒫 (𝑥 × V))
4713, 46eqeltrd 2165 . . . . . . . . . . 11 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → ∈ 𝒫 (𝑥 × V))
4847ex 114 . . . . . . . . . 10 ((𝜑𝑧𝑥) → ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∈ 𝒫 (𝑥 × V)))
4948exlimdv 1748 . . . . . . . . 9 ((𝜑𝑧𝑥) → (∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∈ 𝒫 (𝑥 × V)))
5049rexlimdva 2490 . . . . . . . 8 (𝜑 → (∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∈ 𝒫 (𝑥 × V)))
5150abssdv 3096 . . . . . . 7 (𝜑 → { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))} ⊆ 𝒫 (𝑥 × V))
523, 51syl5eqss 3071 . . . . . 6 (𝜑𝐵 ⊆ 𝒫 (𝑥 × V))
53 sspwuni 3819 . . . . . 6 (𝐵 ⊆ 𝒫 (𝑥 × V) ↔ 𝐵 ⊆ (𝑥 × V))
5452, 53sylib 121 . . . . 5 (𝜑 𝐵 ⊆ (𝑥 × V))
55 dmss 4648 . . . . 5 ( 𝐵 ⊆ (𝑥 × V) → dom 𝐵 ⊆ dom (𝑥 × V))
5654, 55syl 14 . . . 4 (𝜑 → dom 𝐵 ⊆ dom (𝑥 × V))
57 dmxpss 4874 . . . 4 dom (𝑥 × V) ⊆ 𝑥
5856, 57syl6ss 3038 . . 3 (𝜑 → dom 𝐵𝑥)
591, 2, 3, 4, 5tfrlemibxssdm 6106 . . 3 (𝜑𝑥 ⊆ dom 𝐵)
6058, 59eqssd 3043 . 2 (𝜑 → dom 𝐵 = 𝑥)
61 df-fn 5031 . 2 ( 𝐵 Fn 𝑥 ↔ (Fun 𝐵 ∧ dom 𝐵 = 𝑥))
6212, 60, 61sylanbrc 409 1 (𝜑 𝐵 Fn 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 925  wal 1288   = wceq 1290  wex 1427  wcel 1439  {cab 2075  wral 2360  wrex 2361  Vcvv 2620  cun 2998  wss 3000  𝒫 cpw 3433  {csn 3450  cop 3453   cuni 3659  Ord word 4198  Oncon0 4199  suc csuc 4201   × cxp 4450  dom cdm 4452  cres 4454  Fun wfun 5022   Fn wfn 5023  wf 5024  cfv 5028  recscrecs 6083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-recs 6084
This theorem is referenced by:  tfrlemibex  6108  tfrlemiubacc  6109  tfrlemiex  6110
  Copyright terms: Public domain W3C validator