Proof of Theorem tfr1onlembfn
| Step | Hyp | Ref
| Expression |
| 1 | | tfr1on.f |
. . . . . 6
⊢ 𝐹 = recs(𝐺) |
| 2 | | tfr1on.g |
. . . . . 6
⊢ (𝜑 → Fun 𝐺) |
| 3 | | tfr1on.x |
. . . . . 6
⊢ (𝜑 → Ord 𝑋) |
| 4 | | tfr1on.ex |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| 5 | | tfr1onlemsucfn.1 |
. . . . . 6
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| 6 | | tfr1onlembacc.3 |
. . . . . 6
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
| 7 | | tfr1onlembacc.u |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 8 | | tfr1onlembacc.4 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
| 9 | | tfr1onlembacc.5 |
. . . . . 6
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembacc 6409 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 11 | 10 | unissd 3864 |
. . . 4
⊢ (𝜑 → ∪ 𝐵
⊆ ∪ 𝐴) |
| 12 | 5, 3 | tfr1onlemssrecs 6406 |
. . . 4
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) |
| 13 | 11, 12 | sstrd 3194 |
. . 3
⊢ (𝜑 → ∪ 𝐵
⊆ recs(𝐺)) |
| 14 | | tfrfun 6387 |
. . 3
⊢ Fun
recs(𝐺) |
| 15 | | funss 5278 |
. . 3
⊢ (∪ 𝐵
⊆ recs(𝐺) → (Fun
recs(𝐺) → Fun ∪ 𝐵)) |
| 16 | 13, 14, 15 | mpisyl 1457 |
. 2
⊢ (𝜑 → Fun ∪ 𝐵) |
| 17 | | simpr3 1007 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
| 18 | | simpl 109 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝜑) |
| 19 | 3 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → Ord 𝑋) |
| 20 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝐷) |
| 21 | 8 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝐷 ∈ 𝑋) |
| 22 | 20, 21 | jca 306 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋)) |
| 23 | | ordtr1 4424 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
| 24 | 19, 22, 23 | sylc 62 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝑋) |
| 25 | 18, 24 | jca 306 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝜑 ∧ 𝑧 ∈ 𝑋)) |
| 26 | 2 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Fun 𝐺) |
| 27 | 3 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Ord 𝑋) |
| 28 | 4 | 3adant1r 1233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| 29 | 28 | 3adant1r 1233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| 30 | | simplr 528 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝑋) |
| 31 | | simpr1 1005 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 Fn 𝑧) |
| 32 | | simpr2 1006 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 ∈ 𝐴) |
| 33 | 1, 26, 27, 29, 5, 30, 31, 32 | tfr1onlemsucfn 6407 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| 34 | 25, 33 | sylan 283 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| 35 | | dffn2 5412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶V) |
| 36 | 34, 35 | sylib 122 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶V) |
| 37 | | fssxp 5428 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶V → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (suc 𝑧 × V)) |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (suc 𝑧 × V)) |
| 39 | | ordelon 4419 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord
𝑋 ∧ 𝐷 ∈ 𝑋) → 𝐷 ∈ On) |
| 40 | 3, 8, 39 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷 ∈ On) |
| 41 | | eloni 4411 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ On → Ord 𝐷) |
| 42 | 40, 41 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ord 𝐷) |
| 43 | 42 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Ord 𝐷) |
| 44 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝐷) |
| 45 | | ordsucss 4541 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝐷 → (𝑧 ∈ 𝐷 → suc 𝑧 ⊆ 𝐷)) |
| 46 | 43, 44, 45 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → suc 𝑧 ⊆ 𝐷) |
| 47 | | xpss1 4774 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑧 ⊆ 𝐷 → (suc 𝑧 × V) ⊆ (𝐷 × V)) |
| 48 | 46, 47 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (suc 𝑧 × V) ⊆ (𝐷 × V)) |
| 49 | 38, 48 | sstrd 3194 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × V)) |
| 50 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑔 ∈ V |
| 51 | | vex 2766 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V |
| 52 | 18 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝜑) |
| 53 | 24 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝑋) |
| 54 | | simpr1 1005 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 Fn 𝑧) |
| 55 | | fneq2 5348 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) |
| 56 | 55 | imbi1d 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 57 | 56 | albidv 1838 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 58 | 4 | 3expia 1207 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 59 | 58 | alrimiv 1888 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 60 | 59 | ralrimiva 2570 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 61 | 60 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 62 | | simp2 1000 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → 𝑧 ∈ 𝑋) |
| 63 | 57, 61, 62 | rspcdva 2873 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) |
| 64 | | simp3 1001 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → 𝑔 Fn 𝑧) |
| 65 | | fneq1 5347 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) |
| 66 | | fveq2 5561 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) |
| 67 | 66 | eleq1d 2265 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
| 68 | 65, 67 | imbi12d 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
| 69 | 68 | spv 1874 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
| 70 | 63, 64, 69 | sylc 62 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → (𝐺‘𝑔) ∈ V) |
| 71 | 52, 53, 54, 70 | syl3anc 1249 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝐺‘𝑔) ∈ V) |
| 72 | | opexg 4262 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
| 73 | 51, 71, 72 | sylancr 414 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
| 74 | | snexg 4218 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
| 75 | 73, 74 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
| 76 | | unexg 4479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
| 77 | 50, 75, 76 | sylancr 414 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
| 78 | | elpwg 3614 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × V) ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × V))) |
| 79 | 77, 78 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × V) ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × V))) |
| 80 | 49, 79 | mpbird 167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × V)) |
| 81 | 17, 80 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝒫 (𝐷 × V)) |
| 82 | 81 | ex 115 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × V))) |
| 83 | 82 | exlimdv 1833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × V))) |
| 84 | 83 | rexlimdva 2614 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × V))) |
| 85 | 84 | abssdv 3258 |
. . . . . . 7
⊢ (𝜑 → {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} ⊆ 𝒫 (𝐷 × V)) |
| 86 | 6, 85 | eqsstrid 3230 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝒫 (𝐷 × V)) |
| 87 | | sspwuni 4002 |
. . . . . 6
⊢ (𝐵 ⊆ 𝒫 (𝐷 × V) ↔ ∪ 𝐵
⊆ (𝐷 ×
V)) |
| 88 | 86, 87 | sylib 122 |
. . . . 5
⊢ (𝜑 → ∪ 𝐵
⊆ (𝐷 ×
V)) |
| 89 | | dmss 4866 |
. . . . 5
⊢ (∪ 𝐵
⊆ (𝐷 × V)
→ dom ∪ 𝐵 ⊆ dom (𝐷 × V)) |
| 90 | 88, 89 | syl 14 |
. . . 4
⊢ (𝜑 → dom ∪ 𝐵
⊆ dom (𝐷 ×
V)) |
| 91 | | dmxpss 5101 |
. . . 4
⊢ dom
(𝐷 × V) ⊆ 𝐷 |
| 92 | 90, 91 | sstrdi 3196 |
. . 3
⊢ (𝜑 → dom ∪ 𝐵
⊆ 𝐷) |
| 93 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembxssdm 6410 |
. . 3
⊢ (𝜑 → 𝐷 ⊆ dom ∪
𝐵) |
| 94 | 92, 93 | eqssd 3201 |
. 2
⊢ (𝜑 → dom ∪ 𝐵 =
𝐷) |
| 95 | | df-fn 5262 |
. 2
⊢ (∪ 𝐵 Fn
𝐷 ↔ (Fun ∪ 𝐵
∧ dom ∪ 𝐵 = 𝐷)) |
| 96 | 16, 94, 95 | sylanbrc 417 |
1
⊢ (𝜑 → ∪ 𝐵 Fn
𝐷) |