Proof of Theorem tfr1onlembfn
| Step | Hyp | Ref
 | Expression | 
| 1 |   | tfr1on.f | 
. . . . . 6
⊢ 𝐹 = recs(𝐺) | 
| 2 |   | tfr1on.g | 
. . . . . 6
⊢ (𝜑 → Fun 𝐺) | 
| 3 |   | tfr1on.x | 
. . . . . 6
⊢ (𝜑 → Ord 𝑋) | 
| 4 |   | tfr1on.ex | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | 
| 5 |   | tfr1onlemsucfn.1 | 
. . . . . 6
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | 
| 6 |   | tfr1onlembacc.3 | 
. . . . . 6
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | 
| 7 |   | tfr1onlembacc.u | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 8 |   | tfr1onlembacc.4 | 
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑋) | 
| 9 |   | tfr1onlembacc.5 | 
. . . . . 6
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | 
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembacc 6400 | 
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝐴) | 
| 11 | 10 | unissd 3863 | 
. . . 4
⊢ (𝜑 → ∪ 𝐵
⊆ ∪ 𝐴) | 
| 12 | 5, 3 | tfr1onlemssrecs 6397 | 
. . . 4
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) | 
| 13 | 11, 12 | sstrd 3193 | 
. . 3
⊢ (𝜑 → ∪ 𝐵
⊆ recs(𝐺)) | 
| 14 |   | tfrfun 6378 | 
. . 3
⊢ Fun
recs(𝐺) | 
| 15 |   | funss 5277 | 
. . 3
⊢ (∪ 𝐵
⊆ recs(𝐺) → (Fun
recs(𝐺) → Fun ∪ 𝐵)) | 
| 16 | 13, 14, 15 | mpisyl 1457 | 
. 2
⊢ (𝜑 → Fun ∪ 𝐵) | 
| 17 |   | simpr3 1007 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 18 |   | simpl 109 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝜑) | 
| 19 | 3 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → Ord 𝑋) | 
| 20 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝐷) | 
| 21 | 8 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝐷 ∈ 𝑋) | 
| 22 | 20, 21 | jca 306 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋)) | 
| 23 |   | ordtr1 4423 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋) → 𝑧 ∈ 𝑋)) | 
| 24 | 19, 22, 23 | sylc 62 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝑋) | 
| 25 | 18, 24 | jca 306 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝜑 ∧ 𝑧 ∈ 𝑋)) | 
| 26 | 2 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Fun 𝐺) | 
| 27 | 3 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Ord 𝑋) | 
| 28 | 4 | 3adant1r 1233 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | 
| 29 | 28 | 3adant1r 1233 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | 
| 30 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝑋) | 
| 31 |   | simpr1 1005 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 Fn 𝑧) | 
| 32 |   | simpr2 1006 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 ∈ 𝐴) | 
| 33 | 1, 26, 27, 29, 5, 30, 31, 32 | tfr1onlemsucfn 6398 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) | 
| 34 | 25, 33 | sylan 283 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) | 
| 35 |   | dffn2 5409 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶V) | 
| 36 | 34, 35 | sylib 122 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶V) | 
| 37 |   | fssxp 5425 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶V → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (suc 𝑧 × V)) | 
| 38 | 36, 37 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (suc 𝑧 × V)) | 
| 39 |   | ordelon 4418 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord
𝑋 ∧ 𝐷 ∈ 𝑋) → 𝐷 ∈ On) | 
| 40 | 3, 8, 39 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷 ∈ On) | 
| 41 |   | eloni 4410 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ On → Ord 𝐷) | 
| 42 | 40, 41 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ord 𝐷) | 
| 43 | 42 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Ord 𝐷) | 
| 44 |   | simplr 528 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝐷) | 
| 45 |   | ordsucss 4540 | 
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝐷 → (𝑧 ∈ 𝐷 → suc 𝑧 ⊆ 𝐷)) | 
| 46 | 43, 44, 45 | sylc 62 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → suc 𝑧 ⊆ 𝐷) | 
| 47 |   | xpss1 4773 | 
. . . . . . . . . . . . . . 15
⊢ (suc
𝑧 ⊆ 𝐷 → (suc 𝑧 × V) ⊆ (𝐷 × V)) | 
| 48 | 46, 47 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (suc 𝑧 × V) ⊆ (𝐷 × V)) | 
| 49 | 38, 48 | sstrd 3193 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × V)) | 
| 50 |   | vex 2766 | 
. . . . . . . . . . . . . . 15
⊢ 𝑔 ∈ V | 
| 51 |   | vex 2766 | 
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V | 
| 52 | 18 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝜑) | 
| 53 | 24 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝑋) | 
| 54 |   | simpr1 1005 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 Fn 𝑧) | 
| 55 |   | fneq2 5347 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) | 
| 56 | 55 | imbi1d 231 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) | 
| 57 | 56 | albidv 1838 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) | 
| 58 | 4 | 3expia 1207 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) | 
| 59 | 58 | alrimiv 1888 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) | 
| 60 | 59 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) | 
| 61 | 60 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) | 
| 62 |   | simp2 1000 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → 𝑧 ∈ 𝑋) | 
| 63 | 57, 61, 62 | rspcdva 2873 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) | 
| 64 |   | simp3 1001 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → 𝑔 Fn 𝑧) | 
| 65 |   | fneq1 5346 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) | 
| 66 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | 
| 67 | 66 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) | 
| 68 | 65, 67 | imbi12d 234 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) | 
| 69 | 68 | spv 1874 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) | 
| 70 | 63, 64, 69 | sylc 62 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔 Fn 𝑧) → (𝐺‘𝑔) ∈ V) | 
| 71 | 52, 53, 54, 70 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝐺‘𝑔) ∈ V) | 
| 72 |   | opexg 4261 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 73 | 51, 71, 72 | sylancr 414 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 74 |   | snexg 4217 | 
. . . . . . . . . . . . . . . 16
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) | 
| 75 | 73, 74 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) | 
| 76 |   | unexg 4478 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) | 
| 77 | 50, 75, 76 | sylancr 414 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) | 
| 78 |   | elpwg 3613 | 
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × V) ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × V))) | 
| 79 | 77, 78 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × V) ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × V))) | 
| 80 | 49, 79 | mpbird 167 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × V)) | 
| 81 | 17, 80 | eqeltrd 2273 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝒫 (𝐷 × V)) | 
| 82 | 81 | ex 115 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × V))) | 
| 83 | 82 | exlimdv 1833 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × V))) | 
| 84 | 83 | rexlimdva 2614 | 
. . . . . . . 8
⊢ (𝜑 → (∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × V))) | 
| 85 | 84 | abssdv 3257 | 
. . . . . . 7
⊢ (𝜑 → {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} ⊆ 𝒫 (𝐷 × V)) | 
| 86 | 6, 85 | eqsstrid 3229 | 
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝒫 (𝐷 × V)) | 
| 87 |   | sspwuni 4001 | 
. . . . . 6
⊢ (𝐵 ⊆ 𝒫 (𝐷 × V) ↔ ∪ 𝐵
⊆ (𝐷 ×
V)) | 
| 88 | 86, 87 | sylib 122 | 
. . . . 5
⊢ (𝜑 → ∪ 𝐵
⊆ (𝐷 ×
V)) | 
| 89 |   | dmss 4865 | 
. . . . 5
⊢ (∪ 𝐵
⊆ (𝐷 × V)
→ dom ∪ 𝐵 ⊆ dom (𝐷 × V)) | 
| 90 | 88, 89 | syl 14 | 
. . . 4
⊢ (𝜑 → dom ∪ 𝐵
⊆ dom (𝐷 ×
V)) | 
| 91 |   | dmxpss 5100 | 
. . . 4
⊢ dom
(𝐷 × V) ⊆ 𝐷 | 
| 92 | 90, 91 | sstrdi 3195 | 
. . 3
⊢ (𝜑 → dom ∪ 𝐵
⊆ 𝐷) | 
| 93 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembxssdm 6401 | 
. . 3
⊢ (𝜑 → 𝐷 ⊆ dom ∪
𝐵) | 
| 94 | 92, 93 | eqssd 3200 | 
. 2
⊢ (𝜑 → dom ∪ 𝐵 =
𝐷) | 
| 95 |   | df-fn 5261 | 
. 2
⊢ (∪ 𝐵 Fn
𝐷 ↔ (Fun ∪ 𝐵
∧ dom ∪ 𝐵 = 𝐷)) | 
| 96 | 16, 94, 95 | sylanbrc 417 | 
1
⊢ (𝜑 → ∪ 𝐵 Fn
𝐷) |