| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvct | GIF version | ||
| Description: If a set is dominated by ω, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| cnvct | ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5079 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | ctex 6865 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 3 | cnvexg 5239 | . . . . 5 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ≼ ω → ◡𝐴 ∈ V) |
| 5 | cnven 6924 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
| 6 | 1, 4, 5 | sylancr 414 | . . 3 ⊢ (𝐴 ≼ ω → ◡𝐴 ≈ ◡◡𝐴) |
| 7 | cnvcnvss 5156 | . . . 4 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 8 | ssdomg 6893 | . . . 4 ⊢ (𝐴 ∈ V → (◡◡𝐴 ⊆ 𝐴 → ◡◡𝐴 ≼ 𝐴)) | |
| 9 | 2, 7, 8 | mpisyl 1467 | . . 3 ⊢ (𝐴 ≼ ω → ◡◡𝐴 ≼ 𝐴) |
| 10 | endomtr 6905 | . . 3 ⊢ ((◡𝐴 ≈ ◡◡𝐴 ∧ ◡◡𝐴 ≼ 𝐴) → ◡𝐴 ≼ 𝐴) | |
| 11 | 6, 9, 10 | syl2anc 411 | . 2 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ 𝐴) |
| 12 | domtr 6900 | . 2 ⊢ ((◡𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ◡𝐴 ≼ ω) | |
| 13 | 11, 12 | mpancom 422 | 1 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 class class class wbr 4059 ωcom 4656 ◡ccnv 4692 Rel wrel 4698 ≈ cen 6848 ≼ cdom 6849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-en 6851 df-dom 6852 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |