| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvct | GIF version | ||
| Description: If a set is dominated by ω, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| cnvct | ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5106 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | ctex 6902 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 3 | cnvexg 5266 | . . . . 5 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ≼ ω → ◡𝐴 ∈ V) |
| 5 | cnven 6961 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
| 6 | 1, 4, 5 | sylancr 414 | . . 3 ⊢ (𝐴 ≼ ω → ◡𝐴 ≈ ◡◡𝐴) |
| 7 | cnvcnvss 5183 | . . . 4 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 8 | ssdomg 6930 | . . . 4 ⊢ (𝐴 ∈ V → (◡◡𝐴 ⊆ 𝐴 → ◡◡𝐴 ≼ 𝐴)) | |
| 9 | 2, 7, 8 | mpisyl 1489 | . . 3 ⊢ (𝐴 ≼ ω → ◡◡𝐴 ≼ 𝐴) |
| 10 | endomtr 6942 | . . 3 ⊢ ((◡𝐴 ≈ ◡◡𝐴 ∧ ◡◡𝐴 ≼ 𝐴) → ◡𝐴 ≼ 𝐴) | |
| 11 | 6, 9, 10 | syl2anc 411 | . 2 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ 𝐴) |
| 12 | domtr 6937 | . 2 ⊢ ((◡𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ◡𝐴 ≼ ω) | |
| 13 | 11, 12 | mpancom 422 | 1 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 class class class wbr 4083 ωcom 4682 ◡ccnv 4718 Rel wrel 4724 ≈ cen 6885 ≼ cdom 6886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-en 6888 df-dom 6889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |