| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvct | GIF version | ||
| Description: If a set is dominated by ω, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| cnvct | ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5061 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | ctex 6844 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 3 | cnvexg 5221 | . . . . 5 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ≼ ω → ◡𝐴 ∈ V) |
| 5 | cnven 6902 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
| 6 | 1, 4, 5 | sylancr 414 | . . 3 ⊢ (𝐴 ≼ ω → ◡𝐴 ≈ ◡◡𝐴) |
| 7 | cnvcnvss 5138 | . . . 4 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 8 | ssdomg 6872 | . . . 4 ⊢ (𝐴 ∈ V → (◡◡𝐴 ⊆ 𝐴 → ◡◡𝐴 ≼ 𝐴)) | |
| 9 | 2, 7, 8 | mpisyl 1466 | . . 3 ⊢ (𝐴 ≼ ω → ◡◡𝐴 ≼ 𝐴) |
| 10 | endomtr 6884 | . . 3 ⊢ ((◡𝐴 ≈ ◡◡𝐴 ∧ ◡◡𝐴 ≼ 𝐴) → ◡𝐴 ≼ 𝐴) | |
| 11 | 6, 9, 10 | syl2anc 411 | . 2 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ 𝐴) |
| 12 | domtr 6879 | . 2 ⊢ ((◡𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ◡𝐴 ≼ ω) | |
| 13 | 11, 12 | mpancom 422 | 1 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 class class class wbr 4045 ωcom 4639 ◡ccnv 4675 Rel wrel 4681 ≈ cen 6827 ≼ cdom 6828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-1st 6228 df-2nd 6229 df-en 6830 df-dom 6831 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |