![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvct | GIF version |
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
cnvct | ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4810 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | ctex 6468 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | cnvexg 4968 | . . . . 5 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ≼ ω → ◡𝐴 ∈ V) |
5 | cnven 6523 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
6 | 1, 4, 5 | sylancr 405 | . . 3 ⊢ (𝐴 ≼ ω → ◡𝐴 ≈ ◡◡𝐴) |
7 | cnvcnvss 4885 | . . . 4 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
8 | ssdomg 6493 | . . . 4 ⊢ (𝐴 ∈ V → (◡◡𝐴 ⊆ 𝐴 → ◡◡𝐴 ≼ 𝐴)) | |
9 | 2, 7, 8 | mpisyl 1380 | . . 3 ⊢ (𝐴 ≼ ω → ◡◡𝐴 ≼ 𝐴) |
10 | endomtr 6505 | . . 3 ⊢ ((◡𝐴 ≈ ◡◡𝐴 ∧ ◡◡𝐴 ≼ 𝐴) → ◡𝐴 ≼ 𝐴) | |
11 | 6, 9, 10 | syl2anc 403 | . 2 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ 𝐴) |
12 | domtr 6500 | . 2 ⊢ ((◡𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ◡𝐴 ≼ ω) | |
13 | 11, 12 | mpancom 413 | 1 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 Vcvv 2619 ⊆ wss 2999 class class class wbr 3845 ωcom 4405 ◡ccnv 4437 Rel wrel 4443 ≈ cen 6453 ≼ cdom 6454 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-1st 5911 df-2nd 5912 df-en 6456 df-dom 6457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |