ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvct GIF version

Theorem cnvct 6925
Description: If a set is dominated by ω, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
cnvct (𝐴 ≼ ω → 𝐴 ≼ ω)

Proof of Theorem cnvct
StepHypRef Expression
1 relcnv 5079 . . . 4 Rel 𝐴
2 ctex 6865 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
3 cnvexg 5239 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
42, 3syl 14 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
5 cnven 6924 . . . 4 ((Rel 𝐴𝐴 ∈ V) → 𝐴𝐴)
61, 4, 5sylancr 414 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
7 cnvcnvss 5156 . . . 4 𝐴𝐴
8 ssdomg 6893 . . . 4 (𝐴 ∈ V → (𝐴𝐴𝐴𝐴))
92, 7, 8mpisyl 1467 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
10 endomtr 6905 . . 3 ((𝐴𝐴𝐴𝐴) → 𝐴𝐴)
116, 9, 10syl2anc 411 . 2 (𝐴 ≼ ω → 𝐴𝐴)
12 domtr 6900 . 2 ((𝐴𝐴𝐴 ≼ ω) → 𝐴 ≼ ω)
1311, 12mpancom 422 1 (𝐴 ≼ ω → 𝐴 ≼ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  Vcvv 2776  wss 3174   class class class wbr 4059  ωcom 4656  ccnv 4692  Rel wrel 4698  cen 6848  cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-en 6851  df-dom 6852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator