ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txdis1cn GIF version

Theorem txdis1cn 12289
Description: A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txdis1cn.x (𝜑𝑋𝑉)
txdis1cn.j (𝜑𝐽 ∈ (TopOn‘𝑌))
txdis1cn.k (𝜑𝐾 ∈ Top)
txdis1cn.f (𝜑𝐹 Fn (𝑋 × 𝑌))
txdis1cn.1 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
txdis1cn (𝜑𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽   𝑥,𝑋,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐽(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem txdis1cn
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txdis1cn.f . . 3 (𝜑𝐹 Fn (𝑋 × 𝑌))
2 txdis1cn.j . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑌))
32adantr 272 . . . . . 6 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑌))
4 txdis1cn.k . . . . . . . 8 (𝜑𝐾 ∈ Top)
5 toptopon2 12029 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
64, 5sylib 121 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
76adantr 272 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
8 txdis1cn.1 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
9 cnf2 12216 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)):𝑌 𝐾)
103, 7, 8, 9syl3anc 1199 . . . . 5 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)):𝑌 𝐾)
11 eqid 2115 . . . . . 6 (𝑦𝑌 ↦ (𝑥𝐹𝑦)) = (𝑦𝑌 ↦ (𝑥𝐹𝑦))
1211fmpt 5524 . . . . 5 (∀𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾 ↔ (𝑦𝑌 ↦ (𝑥𝐹𝑦)):𝑌 𝐾)
1310, 12sylibr 133 . . . 4 ((𝜑𝑥𝑋) → ∀𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾)
1413ralrimiva 2479 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾)
15 ffnov 5829 . . 3 (𝐹:(𝑋 × 𝑌)⟶ 𝐾 ↔ (𝐹 Fn (𝑋 × 𝑌) ∧ ∀𝑥𝑋𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾))
161, 14, 15sylanbrc 411 . 2 (𝜑𝐹:(𝑋 × 𝑌)⟶ 𝐾)
17 cnvimass 4860 . . . . . . . 8 (𝐹𝑢) ⊆ dom 𝐹
181adantr 272 . . . . . . . . 9 ((𝜑𝑢𝐾) → 𝐹 Fn (𝑋 × 𝑌))
19 fndm 5180 . . . . . . . . 9 (𝐹 Fn (𝑋 × 𝑌) → dom 𝐹 = (𝑋 × 𝑌))
2018, 19syl 14 . . . . . . . 8 ((𝜑𝑢𝐾) → dom 𝐹 = (𝑋 × 𝑌))
2117, 20sseqtrid 3113 . . . . . . 7 ((𝜑𝑢𝐾) → (𝐹𝑢) ⊆ (𝑋 × 𝑌))
22 relxp 4608 . . . . . . 7 Rel (𝑋 × 𝑌)
23 relss 4586 . . . . . . 7 ((𝐹𝑢) ⊆ (𝑋 × 𝑌) → (Rel (𝑋 × 𝑌) → Rel (𝐹𝑢)))
2421, 22, 23mpisyl 1405 . . . . . 6 ((𝜑𝑢𝐾) → Rel (𝐹𝑢))
25 elpreima 5493 . . . . . . . 8 (𝐹 Fn (𝑋 × 𝑌) → (⟨𝑥, 𝑧⟩ ∈ (𝐹𝑢) ↔ (⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢)))
2618, 25syl 14 . . . . . . 7 ((𝜑𝑢𝐾) → (⟨𝑥, 𝑧⟩ ∈ (𝐹𝑢) ↔ (⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢)))
27 opelxp 4529 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ↔ (𝑥𝑋𝑧𝑌))
28 df-ov 5731 . . . . . . . . . . 11 (𝑥𝐹𝑧) = (𝐹‘⟨𝑥, 𝑧⟩)
2928eqcomi 2119 . . . . . . . . . 10 (𝐹‘⟨𝑥, 𝑧⟩) = (𝑥𝐹𝑧)
3029eleq1i 2180 . . . . . . . . 9 ((𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢)
3127, 30anbi12i 453 . . . . . . . 8 ((⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢) ↔ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢))
32 simprll 509 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑥𝑋)
33 snelpwi 4094 . . . . . . . . . . . 12 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
3432, 33syl 14 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ∈ 𝒫 𝑋)
3511mptpreima 4990 . . . . . . . . . . . 12 ((𝑦𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}
368adantrr 468 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑋𝑧𝑌)) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
3736ad2ant2r 498 . . . . . . . . . . . . 13 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
38 simplr 502 . . . . . . . . . . . . 13 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑢𝐾)
39 cnima 12231 . . . . . . . . . . . . 13 (((𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾) ∧ 𝑢𝐾) → ((𝑦𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽)
4037, 38, 39syl2anc 406 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ((𝑦𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽)
4135, 40syl5eqelr 2202 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽)
42 simprlr 510 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑧𝑌)
43 simprr 504 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑥𝐹𝑧) ∈ 𝑢)
44 vsnid 3523 . . . . . . . . . . . . . 14 𝑥 ∈ {𝑥}
45 opelxp 4529 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑥 ∈ {𝑥} ∧ 𝑧 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
4644, 45mpbiran 907 . . . . . . . . . . . . 13 (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ 𝑧 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})
47 oveq2 5736 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑥𝐹𝑦) = (𝑥𝐹𝑧))
4847eleq1d 2183 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢))
4948elrab 2809 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑧𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢))
5046, 49bitri 183 . . . . . . . . . . . 12 (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑧𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢))
5142, 43, 50sylanbrc 411 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
52 relxp 4608 . . . . . . . . . . . . 13 Rel ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})
5352a1i 9 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → Rel ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
54 opelxp 4529 . . . . . . . . . . . . 13 (⟨𝑛, 𝑚⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
5532snssd 3631 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ⊆ 𝑋)
5655sselda 3063 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ 𝑛 ∈ {𝑥}) → 𝑛𝑋)
5756adantrr 468 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛𝑋)
58 elrabi 2806 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → 𝑚𝑌)
5958ad2antll 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑚𝑌)
6057, 59opelxpd 4532 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → ⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌))
61 df-ov 5731 . . . . . . . . . . . . . . . . 17 (𝑛𝐹𝑚) = (𝐹‘⟨𝑛, 𝑚⟩)
62 elsni 3511 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ {𝑥} → 𝑛 = 𝑥)
6362ad2antrl 479 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 = 𝑥)
6463oveq1d 5743 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑛𝐹𝑚) = (𝑥𝐹𝑚))
6561, 64syl5eqr 2161 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘⟨𝑛, 𝑚⟩) = (𝑥𝐹𝑚))
66 oveq2 5736 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑚 → (𝑥𝐹𝑦) = (𝑥𝐹𝑚))
6766eleq1d 2183 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑚 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑚) ∈ 𝑢))
6867elrab 2809 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑚𝑌 ∧ (𝑥𝐹𝑚) ∈ 𝑢))
6968simprbi 271 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (𝑥𝐹𝑚) ∈ 𝑢)
7069ad2antll 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑥𝐹𝑚) ∈ 𝑢)
7165, 70eqeltrd 2191 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)
72 elpreima 5493 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (𝑋 × 𝑌) → (⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢) ↔ (⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)))
731, 72syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢) ↔ (⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)))
7473ad3antrrr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢) ↔ (⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)))
7560, 71, 74mpbir2and 911 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → ⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢))
7675ex 114 . . . . . . . . . . . . 13 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ((𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → ⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢)))
7754, 76syl5bi 151 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (⟨𝑛, 𝑚⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → ⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢)))
7853, 77relssdv 4591 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢))
79 xpeq1 4513 . . . . . . . . . . . . . 14 (𝑎 = {𝑥} → (𝑎 × 𝑏) = ({𝑥} × 𝑏))
8079eleq2d 2184 . . . . . . . . . . . . 13 (𝑎 = {𝑥} → (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ↔ ⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏)))
8179sseq1d 3092 . . . . . . . . . . . . 13 (𝑎 = {𝑥} → ((𝑎 × 𝑏) ⊆ (𝐹𝑢) ↔ ({𝑥} × 𝑏) ⊆ (𝐹𝑢)))
8280, 81anbi12d 462 . . . . . . . . . . . 12 (𝑎 = {𝑥} → ((⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)) ↔ (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (𝐹𝑢))))
83 xpeq2 4514 . . . . . . . . . . . . . 14 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ({𝑥} × 𝑏) = ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
8483eleq2d 2184 . . . . . . . . . . . . 13 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏) ↔ ⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})))
8583sseq1d 3092 . . . . . . . . . . . . 13 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (({𝑥} × 𝑏) ⊆ (𝐹𝑢) ↔ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢)))
8684, 85anbi12d 462 . . . . . . . . . . . 12 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ((⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (𝐹𝑢)) ↔ (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢))))
8782, 86rspc2ev 2774 . . . . . . . . . . 11 (({𝑥} ∈ 𝒫 𝑋 ∧ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽 ∧ (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢))) → ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
8834, 41, 51, 78, 87syl112anc 1203 . . . . . . . . . 10 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
89 vex 2660 . . . . . . . . . . . 12 𝑥 ∈ V
90 vex 2660 . . . . . . . . . . . 12 𝑧 ∈ V
9189, 90opex 4111 . . . . . . . . . . 11 𝑥, 𝑧⟩ ∈ V
92 eleq1 2177 . . . . . . . . . . . . 13 (𝑣 = ⟨𝑥, 𝑧⟩ → (𝑣 ∈ (𝑎 × 𝑏) ↔ ⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏)))
9392anbi1d 458 . . . . . . . . . . . 12 (𝑣 = ⟨𝑥, 𝑧⟩ → ((𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)) ↔ (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
94932rexbidv 2434 . . . . . . . . . . 11 (𝑣 = ⟨𝑥, 𝑧⟩ → (∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)) ↔ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
9591, 94elab 2798 . . . . . . . . . 10 (⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))} ↔ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
9688, 95sylibr 133 . . . . . . . . 9 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))})
9796ex 114 . . . . . . . 8 ((𝜑𝑢𝐾) → (((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))}))
9831, 97syl5bi 151 . . . . . . 7 ((𝜑𝑢𝐾) → ((⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))}))
9926, 98sylbid 149 . . . . . 6 ((𝜑𝑢𝐾) → (⟨𝑥, 𝑧⟩ ∈ (𝐹𝑢) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))}))
10024, 99relssdv 4591 . . . . 5 ((𝜑𝑢𝐾) → (𝐹𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))})
101 ssabral 3134 . . . . 5 ((𝐹𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))} ↔ ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
102100, 101sylib 121 . . . 4 ((𝜑𝑢𝐾) → ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
103 txdis1cn.x . . . . . . 7 (𝜑𝑋𝑉)
104 distopon 12099 . . . . . . 7 (𝑋𝑉 → 𝒫 𝑋 ∈ (TopOn‘𝑋))
105103, 104syl 14 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ (TopOn‘𝑋))
106105adantr 272 . . . . 5 ((𝜑𝑢𝐾) → 𝒫 𝑋 ∈ (TopOn‘𝑋))
1072adantr 272 . . . . 5 ((𝜑𝑢𝐾) → 𝐽 ∈ (TopOn‘𝑌))
108 eltx 12270 . . . . 5 ((𝒫 𝑋 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → ((𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
109106, 107, 108syl2anc 406 . . . 4 ((𝜑𝑢𝐾) → ((𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
110102, 109mpbird 166 . . 3 ((𝜑𝑢𝐾) → (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))
111110ralrimiva 2479 . 2 (𝜑 → ∀𝑢𝐾 (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))
112 txtopon 12273 . . . 4 ((𝒫 𝑋 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌)))
113105, 2, 112syl2anc 406 . . 3 (𝜑 → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌)))
114 iscn 12208 . . 3 (((𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶ 𝐾 ∧ ∀𝑢𝐾 (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))))
115113, 6, 114syl2anc 406 . 2 (𝜑 → (𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶ 𝐾 ∧ ∀𝑢𝐾 (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))))
11616, 111, 115mpbir2and 911 1 (𝜑𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  {cab 2101  wral 2390  wrex 2391  {crab 2394  wss 3037  𝒫 cpw 3476  {csn 3493  cop 3496   cuni 3702  cmpt 3949   × cxp 4497  ccnv 4498  dom cdm 4499  cima 4502  Rel wrel 4504   Fn wfn 5076  wf 5077  cfv 5081  (class class class)co 5728  Topctop 12007  TopOnctopon 12020   Cn ccn 12197   ×t ctx 12263
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-map 6498  df-topgen 11984  df-top 12008  df-topon 12021  df-bases 12053  df-cn 12200  df-tx 12264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator