Step | Hyp | Ref
| Expression |
1 | | txdis1cn.f |
. . 3
⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) |
2 | | txdis1cn.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) |
3 | 2 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑌)) |
4 | | txdis1cn.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Top) |
5 | | toptopon2 12811 |
. . . . . . . 8
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
6 | 4, 5 | sylib 121 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
7 | 6 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
8 | | txdis1cn.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) |
9 | | cnf2 12999 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) |
10 | 3, 7, 8, 9 | syl3anc 1233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) |
11 | | eqid 2170 |
. . . . . 6
⊢ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) = (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) |
12 | 11 | fmpt 5646 |
. . . . 5
⊢
(∀𝑦 ∈
𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾 ↔ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) |
13 | 10, 12 | sylibr 133 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾) |
14 | 13 | ralrimiva 2543 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾) |
15 | | ffnov 5957 |
. . 3
⊢ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ↔ (𝐹 Fn (𝑋 × 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾)) |
16 | 1, 14, 15 | sylanbrc 415 |
. 2
⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶∪ 𝐾) |
17 | | cnvimass 4974 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑢) ⊆ dom 𝐹 |
18 | 1 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝐹 Fn (𝑋 × 𝑌)) |
19 | | fndm 5297 |
. . . . . . . . 9
⊢ (𝐹 Fn (𝑋 × 𝑌) → dom 𝐹 = (𝑋 × 𝑌)) |
20 | 18, 19 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → dom 𝐹 = (𝑋 × 𝑌)) |
21 | 17, 20 | sseqtrid 3197 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ⊆ (𝑋 × 𝑌)) |
22 | | relxp 4720 |
. . . . . . 7
⊢ Rel
(𝑋 × 𝑌) |
23 | | relss 4698 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑢) ⊆ (𝑋 × 𝑌) → (Rel (𝑋 × 𝑌) → Rel (◡𝐹 “ 𝑢))) |
24 | 21, 22, 23 | mpisyl 1439 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → Rel (◡𝐹 “ 𝑢)) |
25 | | elpreima 5615 |
. . . . . . . 8
⊢ (𝐹 Fn (𝑋 × 𝑌) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢))) |
26 | 18, 25 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢))) |
27 | | opelxp 4641 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) |
28 | | df-ov 5856 |
. . . . . . . . . . 11
⊢ (𝑥𝐹𝑧) = (𝐹‘〈𝑥, 𝑧〉) |
29 | 28 | eqcomi 2174 |
. . . . . . . . . 10
⊢ (𝐹‘〈𝑥, 𝑧〉) = (𝑥𝐹𝑧) |
30 | 29 | eleq1i 2236 |
. . . . . . . . 9
⊢ ((𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢) |
31 | 27, 30 | anbi12i 457 |
. . . . . . . 8
⊢
((〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) |
32 | | simprll 532 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑥 ∈ 𝑋) |
33 | | snelpwi 4197 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → {𝑥} ∈ 𝒫 𝑋) |
34 | 32, 33 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ∈ 𝒫 𝑋) |
35 | 11 | mptpreima 5104 |
. . . . . . . . . . . 12
⊢ (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} |
36 | 8 | adantrr 476 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) |
37 | 36 | ad2ant2r 506 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) |
38 | | simplr 525 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑢 ∈ 𝐾) |
39 | | cnima 13014 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾) ∧ 𝑢 ∈ 𝐾) → (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽) |
40 | 37, 38, 39 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽) |
41 | 35, 40 | eqeltrrid 2258 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽) |
42 | | simprlr 533 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑧 ∈ 𝑌) |
43 | | simprr 527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑥𝐹𝑧) ∈ 𝑢) |
44 | | vsnid 3615 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ {𝑥} |
45 | | opelxp 4641 |
. . . . . . . . . . . . . 14
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑥 ∈ {𝑥} ∧ 𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
46 | 44, 45 | mpbiran 935 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ 𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) |
47 | | oveq2 5861 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦) = (𝑥𝐹𝑧)) |
48 | 47 | eleq1d 2239 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢)) |
49 | 48 | elrab 2886 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑧 ∈ 𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢)) |
50 | 46, 49 | bitri 183 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑧 ∈ 𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢)) |
51 | 42, 43, 50 | sylanbrc 415 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
52 | | relxp 4720 |
. . . . . . . . . . . . 13
⊢ Rel
({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) |
53 | 52 | a1i 9 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → Rel ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
54 | | opelxp 4641 |
. . . . . . . . . . . . 13
⊢
(〈𝑛, 𝑚〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
55 | 32 | snssd 3725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ⊆ 𝑋) |
56 | 55 | sselda 3147 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ 𝑛 ∈ {𝑥}) → 𝑛 ∈ 𝑋) |
57 | 56 | adantrr 476 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 ∈ 𝑋) |
58 | | elrabi 2883 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → 𝑚 ∈ 𝑌) |
59 | 58 | ad2antll 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑚 ∈ 𝑌) |
60 | 57, 59 | opelxpd 4644 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌)) |
61 | | df-ov 5856 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛𝐹𝑚) = (𝐹‘〈𝑛, 𝑚〉) |
62 | | elsni 3601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ {𝑥} → 𝑛 = 𝑥) |
63 | 62 | ad2antrl 487 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 = 𝑥) |
64 | 63 | oveq1d 5868 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑛𝐹𝑚) = (𝑥𝐹𝑚)) |
65 | 61, 64 | eqtr3id 2217 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘〈𝑛, 𝑚〉) = (𝑥𝐹𝑚)) |
66 | | oveq2 5861 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑚 → (𝑥𝐹𝑦) = (𝑥𝐹𝑚)) |
67 | 66 | eleq1d 2239 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑚 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑚) ∈ 𝑢)) |
68 | 67 | elrab 2886 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑚 ∈ 𝑌 ∧ (𝑥𝐹𝑚) ∈ 𝑢)) |
69 | 68 | simprbi 273 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (𝑥𝐹𝑚) ∈ 𝑢) |
70 | 69 | ad2antll 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑥𝐹𝑚) ∈ 𝑢) |
71 | 65, 70 | eqeltrd 2247 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢) |
72 | | elpreima 5615 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (𝑋 × 𝑌) → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) |
73 | 1, 72 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) |
74 | 73 | ad3antrrr 489 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) |
75 | 60, 71, 74 | mpbir2and 939 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢)) |
76 | 75 | ex 114 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ((𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢))) |
77 | 54, 76 | syl5bi 151 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (〈𝑛, 𝑚〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢))) |
78 | 53, 77 | relssdv 4703 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢)) |
79 | | xpeq1 4625 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = {𝑥} → (𝑎 × 𝑏) = ({𝑥} × 𝑏)) |
80 | 79 | eleq2d 2240 |
. . . . . . . . . . . . 13
⊢ (𝑎 = {𝑥} → (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏))) |
81 | 79 | sseq1d 3176 |
. . . . . . . . . . . . 13
⊢ (𝑎 = {𝑥} → ((𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢) ↔ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
82 | 80, 81 | anbi12d 470 |
. . . . . . . . . . . 12
⊢ (𝑎 = {𝑥} → ((〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
83 | | xpeq2 4626 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ({𝑥} × 𝑏) = ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
84 | 83 | eleq2d 2240 |
. . . . . . . . . . . . 13
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))) |
85 | 83 | sseq1d 3176 |
. . . . . . . . . . . . 13
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢) ↔ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢))) |
86 | 84, 85 | anbi12d 470 |
. . . . . . . . . . . 12
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ((〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢)))) |
87 | 82, 86 | rspc2ev 2849 |
. . . . . . . . . . 11
⊢ (({𝑥} ∈ 𝒫 𝑋 ∧ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽 ∧ (〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢))) → ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
88 | 34, 41, 51, 78, 87 | syl112anc 1237 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
89 | | vex 2733 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
90 | | vex 2733 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
91 | 89, 90 | opex 4214 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑧〉 ∈ V |
92 | | eleq1 2233 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 〈𝑥, 𝑧〉 → (𝑣 ∈ (𝑎 × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏))) |
93 | 92 | anbi1d 462 |
. . . . . . . . . . . 12
⊢ (𝑣 = 〈𝑥, 𝑧〉 → ((𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
94 | 93 | 2rexbidv 2495 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑥, 𝑧〉 → (∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
95 | 91, 94 | elab 2874 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))} ↔ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
96 | 88, 95 | sylibr 133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))}) |
97 | 96 | ex 114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) |
98 | 31, 97 | syl5bi 151 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) |
99 | 26, 98 | sylbid 149 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) |
100 | 24, 99 | relssdv 4703 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))}) |
101 | | ssabral 3218 |
. . . . 5
⊢ ((◡𝐹 “ 𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))} ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
102 | 100, 101 | sylib 121 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
103 | | txdis1cn.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
104 | | distopon 12881 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ (TopOn‘𝑋)) |
105 | 103, 104 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝑋 ∈ (TopOn‘𝑋)) |
106 | 105 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝒫 𝑋 ∈ (TopOn‘𝑋)) |
107 | 2 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝐽 ∈ (TopOn‘𝑌)) |
108 | | eltx 13053 |
. . . . 5
⊢
((𝒫 𝑋 ∈
(TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → ((◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
109 | 106, 107,
108 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
110 | 102, 109 | mpbird 166 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)) |
111 | 110 | ralrimiva 2543 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)) |
112 | | txtopon 13056 |
. . . 4
⊢
((𝒫 𝑋 ∈
(TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌))) |
113 | 105, 2, 112 | syl2anc 409 |
. . 3
⊢ (𝜑 → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌))) |
114 | | iscn 12991 |
. . 3
⊢
(((𝒫 𝑋
×t 𝐽)
∈ (TopOn‘(𝑋
× 𝑌)) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾))
→ (𝐹 ∈
((𝒫 𝑋
×t 𝐽) Cn
𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ∧ ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)))) |
115 | 113, 6, 114 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ∧ ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)))) |
116 | 16, 111, 115 | mpbir2and 939 |
1
⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) |