Proof of Theorem tfrcllembfn
Step | Hyp | Ref
| Expression |
1 | | tfrcl.f |
. . . . . . 7
⊢ 𝐹 = recs(𝐺) |
2 | | tfrcl.g |
. . . . . . 7
⊢ (𝜑 → Fun 𝐺) |
3 | | tfrcl.x |
. . . . . . 7
⊢ (𝜑 → Ord 𝑋) |
4 | | tfrcl.ex |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
5 | | tfrcllemsucfn.1 |
. . . . . . 7
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
6 | | tfrcllembacc.3 |
. . . . . . 7
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
7 | | tfrcllembacc.u |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
8 | | tfrcllembacc.4 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
9 | | tfrcllembacc.5 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembacc 6334 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
11 | 10 | unissd 3820 |
. . . . 5
⊢ (𝜑 → ∪ 𝐵
⊆ ∪ 𝐴) |
12 | 5, 3 | tfrcllemssrecs 6331 |
. . . . 5
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) |
13 | 11, 12 | sstrd 3157 |
. . . 4
⊢ (𝜑 → ∪ 𝐵
⊆ recs(𝐺)) |
14 | | tfrfun 6299 |
. . . 4
⊢ Fun
recs(𝐺) |
15 | | funss 5217 |
. . . 4
⊢ (∪ 𝐵
⊆ recs(𝐺) → (Fun
recs(𝐺) → Fun ∪ 𝐵)) |
16 | 13, 14, 15 | mpisyl 1439 |
. . 3
⊢ (𝜑 → Fun ∪ 𝐵) |
17 | | simpr3 1000 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
18 | | simpl 108 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝜑) |
19 | 3 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → Ord 𝑋) |
20 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝐷) |
21 | 8 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝐷 ∈ 𝑋) |
22 | 20, 21 | jca 304 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋)) |
23 | | ordtr1 4373 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝐷 ∧ 𝐷 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
24 | 19, 22, 23 | sylc 62 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝑋) |
25 | 18, 24 | jca 304 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝜑 ∧ 𝑧 ∈ 𝑋)) |
26 | 2 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Fun 𝐺) |
27 | 3 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Ord 𝑋) |
28 | 4 | 3adant1r 1226 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
29 | 28 | 3adant1r 1226 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
30 | | simplr 525 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝑋) |
31 | | simpr1 998 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔:𝑧⟶𝑆) |
32 | | simpr2 999 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 ∈ 𝐴) |
33 | 1, 26, 27, 29, 5, 30, 31, 32 | tfrcllemsucfn 6332 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) |
34 | 25, 33 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) |
35 | | fssxp 5365 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (suc 𝑧 × 𝑆)) |
36 | 34, 35 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (suc 𝑧 × 𝑆)) |
37 | | ordelon 4368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Ord
𝑋 ∧ 𝐷 ∈ 𝑋) → 𝐷 ∈ On) |
38 | 3, 8, 37 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 ∈ On) |
39 | | eloni 4360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ On → Ord 𝐷) |
40 | 38, 39 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Ord 𝐷) |
41 | 40 | ad2antrr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Ord 𝐷) |
42 | | simplr 525 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝐷) |
43 | | ordsucss 4488 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord
𝐷 → (𝑧 ∈ 𝐷 → suc 𝑧 ⊆ 𝐷)) |
44 | 41, 42, 43 | sylc 62 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → suc 𝑧 ⊆ 𝐷) |
45 | | xpss1 4721 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑧 ⊆ 𝐷 → (suc 𝑧 × 𝑆) ⊆ (𝐷 × 𝑆)) |
46 | 44, 45 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (suc 𝑧 × 𝑆) ⊆ (𝐷 × 𝑆)) |
47 | 36, 46 | sstrd 3157 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × 𝑆)) |
48 | | vex 2733 |
. . . . . . . . . . . . . . . 16
⊢ 𝑔 ∈ V |
49 | | vex 2733 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
50 | 18 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝜑) |
51 | 24 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝑋) |
52 | | simpr1 998 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔:𝑧⟶𝑆) |
53 | | feq2 5331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑧 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑧⟶𝑆)) |
54 | 53 | imbi1d 230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑧 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
55 | 54 | albidv 1817 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
56 | 4 | 3expia 1200 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
57 | 56 | alrimiv 1867 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
58 | 57 | ralrimiva 2543 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
59 | 58 | 3ad2ant1 1013 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔:𝑧⟶𝑆) → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
60 | | simp2 993 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔:𝑧⟶𝑆) → 𝑧 ∈ 𝑋) |
61 | 55, 59, 60 | rspcdva 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔:𝑧⟶𝑆) → ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
62 | | simp3 994 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔:𝑧⟶𝑆) → 𝑔:𝑧⟶𝑆) |
63 | | feq1 5330 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑔 → (𝑓:𝑧⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) |
64 | | fveq2 5496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) |
65 | 64 | eleq1d 2239 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) |
66 | 63, 65 | imbi12d 233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑔 → ((𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) |
67 | 66 | spv 1853 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
68 | 61, 62, 67 | sylc 62 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑔:𝑧⟶𝑆) → (𝐺‘𝑔) ∈ 𝑆) |
69 | 50, 51, 52, 68 | syl3anc 1233 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝐺‘𝑔) ∈ 𝑆) |
70 | | opexg 4213 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
71 | 49, 69, 70 | sylancr 412 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
72 | | snexg 4170 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
73 | 71, 72 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
74 | | unexg 4428 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
75 | 48, 73, 74 | sylancr 412 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
76 | | elpwg 3574 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × 𝑆) ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × 𝑆))) |
77 | 75, 76 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × 𝑆) ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ⊆ (𝐷 × 𝑆))) |
78 | 47, 77 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝒫 (𝐷 × 𝑆)) |
79 | 17, 78 | eqeltrd 2247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝒫 (𝐷 × 𝑆)) |
80 | 79 | ex 114 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × 𝑆))) |
81 | 80 | exlimdv 1812 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × 𝑆))) |
82 | 81 | rexlimdva 2587 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝒫 (𝐷 × 𝑆))) |
83 | 82 | abssdv 3221 |
. . . . . . . 8
⊢ (𝜑 → {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} ⊆ 𝒫 (𝐷 × 𝑆)) |
84 | 6, 83 | eqsstrid 3193 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ 𝒫 (𝐷 × 𝑆)) |
85 | | sspwuni 3957 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝒫 (𝐷 × 𝑆) ↔ ∪ 𝐵 ⊆ (𝐷 × 𝑆)) |
86 | 84, 85 | sylib 121 |
. . . . . 6
⊢ (𝜑 → ∪ 𝐵
⊆ (𝐷 × 𝑆)) |
87 | | dmss 4810 |
. . . . . 6
⊢ (∪ 𝐵
⊆ (𝐷 × 𝑆) → dom ∪ 𝐵
⊆ dom (𝐷 ×
𝑆)) |
88 | 86, 87 | syl 14 |
. . . . 5
⊢ (𝜑 → dom ∪ 𝐵
⊆ dom (𝐷 ×
𝑆)) |
89 | | dmxpss 5041 |
. . . . 5
⊢ dom
(𝐷 × 𝑆) ⊆ 𝐷 |
90 | 88, 89 | sstrdi 3159 |
. . . 4
⊢ (𝜑 → dom ∪ 𝐵
⊆ 𝐷) |
91 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembxssdm 6335 |
. . . 4
⊢ (𝜑 → 𝐷 ⊆ dom ∪
𝐵) |
92 | 90, 91 | eqssd 3164 |
. . 3
⊢ (𝜑 → dom ∪ 𝐵 =
𝐷) |
93 | | df-fn 5201 |
. . 3
⊢ (∪ 𝐵 Fn
𝐷 ↔ (Fun ∪ 𝐵
∧ dom ∪ 𝐵 = 𝐷)) |
94 | 16, 92, 93 | sylanbrc 415 |
. 2
⊢ (𝜑 → ∪ 𝐵 Fn
𝐷) |
95 | | rnss 4841 |
. . . 4
⊢ (∪ 𝐵
⊆ (𝐷 × 𝑆) → ran ∪ 𝐵
⊆ ran (𝐷 ×
𝑆)) |
96 | 86, 95 | syl 14 |
. . 3
⊢ (𝜑 → ran ∪ 𝐵
⊆ ran (𝐷 ×
𝑆)) |
97 | | rnxpss 5042 |
. . 3
⊢ ran
(𝐷 × 𝑆) ⊆ 𝑆 |
98 | 96, 97 | sstrdi 3159 |
. 2
⊢ (𝜑 → ran ∪ 𝐵
⊆ 𝑆) |
99 | | df-f 5202 |
. 2
⊢ (∪ 𝐵:𝐷⟶𝑆 ↔ (∪ 𝐵 Fn 𝐷 ∧ ran ∪
𝐵 ⊆ 𝑆)) |
100 | 94, 98, 99 | sylanbrc 415 |
1
⊢ (𝜑 → ∪ 𝐵:𝐷⟶𝑆) |