ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembfn GIF version

Theorem tfrcllembfn 6410
Description: Lemma for tfrcl 6417. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllembfn (𝜑 𝐵:𝐷𝑆)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   ,𝐺,𝑧   𝑤,𝐺,𝑦   𝑆,𝑔,,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑤)   𝑆(𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑔,)

Proof of Theorem tfrcllembfn
StepHypRef Expression
1 tfrcl.f . . . . . . 7 𝐹 = recs(𝐺)
2 tfrcl.g . . . . . . 7 (𝜑 → Fun 𝐺)
3 tfrcl.x . . . . . . 7 (𝜑 → Ord 𝑋)
4 tfrcl.ex . . . . . . 7 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
5 tfrcllemsucfn.1 . . . . . . 7 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfrcllembacc.3 . . . . . . 7 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfrcllembacc.u . . . . . . 7 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfrcllembacc.4 . . . . . . 7 (𝜑𝐷𝑋)
9 tfrcllembacc.5 . . . . . . 7 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembacc 6408 . . . . . 6 (𝜑𝐵𝐴)
1110unissd 3859 . . . . 5 (𝜑 𝐵 𝐴)
125, 3tfrcllemssrecs 6405 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
1311, 12sstrd 3189 . . . 4 (𝜑 𝐵 ⊆ recs(𝐺))
14 tfrfun 6373 . . . 4 Fun recs(𝐺)
15 funss 5273 . . . 4 ( 𝐵 ⊆ recs(𝐺) → (Fun recs(𝐺) → Fun 𝐵))
1613, 14, 15mpisyl 1457 . . 3 (𝜑 → Fun 𝐵)
17 simpr3 1007 . . . . . . . . . . . . 13 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
18 simpl 109 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐷) → 𝜑)
193adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐷) → Ord 𝑋)
20 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐷) → 𝑧𝐷)
218adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐷) → 𝐷𝑋)
2220, 21jca 306 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐷) → (𝑧𝐷𝐷𝑋))
23 ordtr1 4419 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑋 → ((𝑧𝐷𝐷𝑋) → 𝑧𝑋))
2419, 22, 23sylc 62 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐷) → 𝑧𝑋)
2518, 24jca 306 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐷) → (𝜑𝑧𝑋))
262ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Fun 𝐺)
273ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Ord 𝑋)
2843adant1r 1233 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑋) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
29283adant1r 1233 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑋) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
30 simplr 528 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝑋)
31 simpr1 1005 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔:𝑧𝑆)
32 simpr2 1006 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔𝐴)
331, 26, 27, 29, 5, 30, 31, 32tfrcllemsucfn 6406 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑋) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
3425, 33sylan 283 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
35 fssxp 5421 . . . . . . . . . . . . . . . 16 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ⊆ (suc 𝑧 × 𝑆))
3634, 35syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ⊆ (suc 𝑧 × 𝑆))
37 ordelon 4414 . . . . . . . . . . . . . . . . . . . 20 ((Ord 𝑋𝐷𝑋) → 𝐷 ∈ On)
383, 8, 37syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ On)
39 eloni 4406 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ On → Ord 𝐷)
4038, 39syl 14 . . . . . . . . . . . . . . . . . 18 (𝜑 → Ord 𝐷)
4140ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Ord 𝐷)
42 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝐷)
43 ordsucss 4536 . . . . . . . . . . . . . . . . 17 (Ord 𝐷 → (𝑧𝐷 → suc 𝑧𝐷))
4441, 42, 43sylc 62 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → suc 𝑧𝐷)
45 xpss1 4769 . . . . . . . . . . . . . . . 16 (suc 𝑧𝐷 → (suc 𝑧 × 𝑆) ⊆ (𝐷 × 𝑆))
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (suc 𝑧 × 𝑆) ⊆ (𝐷 × 𝑆))
4736, 46sstrd 3189 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ⊆ (𝐷 × 𝑆))
48 vex 2763 . . . . . . . . . . . . . . . 16 𝑔 ∈ V
49 vex 2763 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
5018adantr 276 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝜑)
5124adantr 276 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝑋)
52 simpr1 1005 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔:𝑧𝑆)
53 feq2 5387 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
5453imbi1d 231 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
5554albidv 1835 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
5643expia 1207 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
5756alrimiv 1885 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
5857ralrimiva 2567 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
59583ad2ant1 1020 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑋𝑔:𝑧𝑆) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
60 simp2 1000 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑋𝑔:𝑧𝑆) → 𝑧𝑋)
6155, 59, 60rspcdva 2869 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑋𝑔:𝑧𝑆) → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
62 simp3 1001 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑋𝑔:𝑧𝑆) → 𝑔:𝑧𝑆)
63 feq1 5386 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
64 fveq2 5554 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
6564eleq1d 2262 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
6663, 65imbi12d 234 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
6766spv 1871 . . . . . . . . . . . . . . . . . . . 20 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
6861, 62, 67sylc 62 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝑋𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
6950, 51, 52, 68syl3anc 1249 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝐺𝑔) ∈ 𝑆)
70 opexg 4257 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
7149, 69, 70sylancr 414 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
72 snexg 4213 . . . . . . . . . . . . . . . . 17 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
7371, 72syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
74 unexg 4474 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
7548, 73, 74sylancr 414 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
76 elpwg 3609 . . . . . . . . . . . . . . 15 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝒫 (𝐷 × 𝑆) ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ⊆ (𝐷 × 𝑆)))
7775, 76syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝒫 (𝐷 × 𝑆) ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ⊆ (𝐷 × 𝑆)))
7847, 77mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝒫 (𝐷 × 𝑆))
7917, 78eqeltrd 2270 . . . . . . . . . . . 12 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → ∈ 𝒫 (𝐷 × 𝑆))
8079ex 115 . . . . . . . . . . 11 ((𝜑𝑧𝐷) → ((𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∈ 𝒫 (𝐷 × 𝑆)))
8180exlimdv 1830 . . . . . . . . . 10 ((𝜑𝑧𝐷) → (∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∈ 𝒫 (𝐷 × 𝑆)))
8281rexlimdva 2611 . . . . . . . . 9 (𝜑 → (∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∈ 𝒫 (𝐷 × 𝑆)))
8382abssdv 3253 . . . . . . . 8 (𝜑 → { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))} ⊆ 𝒫 (𝐷 × 𝑆))
846, 83eqsstrid 3225 . . . . . . 7 (𝜑𝐵 ⊆ 𝒫 (𝐷 × 𝑆))
85 sspwuni 3997 . . . . . . 7 (𝐵 ⊆ 𝒫 (𝐷 × 𝑆) ↔ 𝐵 ⊆ (𝐷 × 𝑆))
8684, 85sylib 122 . . . . . 6 (𝜑 𝐵 ⊆ (𝐷 × 𝑆))
87 dmss 4861 . . . . . 6 ( 𝐵 ⊆ (𝐷 × 𝑆) → dom 𝐵 ⊆ dom (𝐷 × 𝑆))
8886, 87syl 14 . . . . 5 (𝜑 → dom 𝐵 ⊆ dom (𝐷 × 𝑆))
89 dmxpss 5096 . . . . 5 dom (𝐷 × 𝑆) ⊆ 𝐷
9088, 89sstrdi 3191 . . . 4 (𝜑 → dom 𝐵𝐷)
911, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembxssdm 6409 . . . 4 (𝜑𝐷 ⊆ dom 𝐵)
9290, 91eqssd 3196 . . 3 (𝜑 → dom 𝐵 = 𝐷)
93 df-fn 5257 . . 3 ( 𝐵 Fn 𝐷 ↔ (Fun 𝐵 ∧ dom 𝐵 = 𝐷))
9416, 92, 93sylanbrc 417 . 2 (𝜑 𝐵 Fn 𝐷)
95 rnss 4892 . . . 4 ( 𝐵 ⊆ (𝐷 × 𝑆) → ran 𝐵 ⊆ ran (𝐷 × 𝑆))
9686, 95syl 14 . . 3 (𝜑 → ran 𝐵 ⊆ ran (𝐷 × 𝑆))
97 rnxpss 5097 . . 3 ran (𝐷 × 𝑆) ⊆ 𝑆
9896, 97sstrdi 3191 . 2 (𝜑 → ran 𝐵𝑆)
99 df-f 5258 . 2 ( 𝐵:𝐷𝑆 ↔ ( 𝐵 Fn 𝐷 ∧ ran 𝐵𝑆))
10094, 98, 99sylanbrc 417 1 (𝜑 𝐵:𝐷𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  cun 3151  wss 3153  𝒫 cpw 3601  {csn 3618  cop 3621   cuni 3835  Ord word 4393  Oncon0 4394  suc csuc 4396   × cxp 4657  dom cdm 4659  ran crn 4660  cres 4661  Fun wfun 5248   Fn wfn 5249  wf 5250  cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfrcllembex  6411  tfrcllemubacc  6412  tfrcllemex  6413
  Copyright terms: Public domain W3C validator