![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fliftcnv | GIF version |
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftcnv | ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) | |
2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
3 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
4 | 1, 2, 3 | fliftrel 5795 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅)) |
5 | relxp 4737 | . . . 4 ⊢ Rel (𝑆 × 𝑅) | |
6 | relss 4715 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) | |
7 | 4, 5, 6 | mpisyl 1446 | . . 3 ⊢ (𝜑 → Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
8 | relcnv 5008 | . . 3 ⊢ Rel ◡𝐹 | |
9 | 7, 8 | jctil 312 | . 2 ⊢ (𝜑 → (Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) |
10 | flift.1 | . . . . . . 7 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
11 | 10, 3, 2 | fliftel 5796 | . . . . . 6 ⊢ (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
12 | vex 2742 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
13 | vex 2742 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
14 | 12, 13 | brcnv 4812 | . . . . . 6 ⊢ (𝑦◡𝐹𝑧 ↔ 𝑧𝐹𝑦) |
15 | ancom 266 | . . . . . . 7 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) | |
16 | 15 | rexbii 2484 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
17 | 11, 14, 16 | 3bitr4g 223 | . . . . 5 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
18 | 1, 2, 3 | fliftel 5796 | . . . . 5 ⊢ (𝜑 → (𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
19 | 17, 18 | bitr4d 191 | . . . 4 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ 𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧)) |
20 | df-br 4006 | . . . 4 ⊢ (𝑦◡𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ◡𝐹) | |
21 | df-br 4006 | . . . 4 ⊢ (𝑦ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) | |
22 | 19, 20, 21 | 3bitr3g 222 | . . 3 ⊢ (𝜑 → (⟨𝑦, 𝑧⟩ ∈ ◡𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩))) |
23 | 22 | eqrelrdv2 4727 | . 2 ⊢ (((Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
24 | 9, 23 | mpancom 422 | 1 ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐵, 𝐴⟩)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⊆ wss 3131 ⟨cop 3597 class class class wbr 4005 ↦ cmpt 4066 × cxp 4626 ◡ccnv 4627 ran crn 4629 Rel wrel 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |