| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftcnv | GIF version | ||
| Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fliftcnv | ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) | |
| 2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 3 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 4 | 1, 2, 3 | fliftrel 5842 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅)) |
| 5 | relxp 4773 | . . . 4 ⊢ Rel (𝑆 × 𝑅) | |
| 6 | relss 4751 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) | |
| 7 | 4, 5, 6 | mpisyl 1457 | . . 3 ⊢ (𝜑 → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| 8 | relcnv 5048 | . . 3 ⊢ Rel ◡𝐹 | |
| 9 | 7, 8 | jctil 312 | . 2 ⊢ (𝜑 → (Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
| 10 | flift.1 | . . . . . . 7 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 11 | 10, 3, 2 | fliftel 5843 | . . . . . 6 ⊢ (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
| 12 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 13 | vex 2766 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 14 | 12, 13 | brcnv 4850 | . . . . . 6 ⊢ (𝑦◡𝐹𝑧 ↔ 𝑧𝐹𝑦) |
| 15 | ancom 266 | . . . . . . 7 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) | |
| 16 | 15 | rexbii 2504 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 17 | 11, 14, 16 | 3bitr4g 223 | . . . . 5 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
| 18 | 1, 2, 3 | fliftel 5843 | . . . . 5 ⊢ (𝜑 → (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
| 19 | 17, 18 | bitr4d 191 | . . . 4 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ 𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧)) |
| 20 | df-br 4035 | . . . 4 ⊢ (𝑦◡𝐹𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐹) | |
| 21 | df-br 4035 | . . . 4 ⊢ (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) | |
| 22 | 19, 20, 21 | 3bitr3g 222 | . . 3 ⊢ (𝜑 → (〈𝑦, 𝑧〉 ∈ ◡𝐹 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
| 23 | 22 | eqrelrdv2 4763 | . 2 ⊢ (((Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) ∧ 𝜑) → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| 24 | 9, 23 | mpancom 422 | 1 ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ⊆ wss 3157 〈cop 3626 class class class wbr 4034 ↦ cmpt 4095 × cxp 4662 ◡ccnv 4663 ran crn 4665 Rel wrel 4669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |