| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftcnv | GIF version | ||
| Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fliftcnv | ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) | |
| 2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 3 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 4 | 1, 2, 3 | fliftrel 5861 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅)) |
| 5 | relxp 4784 | . . . 4 ⊢ Rel (𝑆 × 𝑅) | |
| 6 | relss 4762 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) | |
| 7 | 4, 5, 6 | mpisyl 1466 | . . 3 ⊢ (𝜑 → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| 8 | relcnv 5060 | . . 3 ⊢ Rel ◡𝐹 | |
| 9 | 7, 8 | jctil 312 | . 2 ⊢ (𝜑 → (Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
| 10 | flift.1 | . . . . . . 7 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 11 | 10, 3, 2 | fliftel 5862 | . . . . . 6 ⊢ (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
| 12 | vex 2775 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 13 | vex 2775 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 14 | 12, 13 | brcnv 4861 | . . . . . 6 ⊢ (𝑦◡𝐹𝑧 ↔ 𝑧𝐹𝑦) |
| 15 | ancom 266 | . . . . . . 7 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) | |
| 16 | 15 | rexbii 2513 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 17 | 11, 14, 16 | 3bitr4g 223 | . . . . 5 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
| 18 | 1, 2, 3 | fliftel 5862 | . . . . 5 ⊢ (𝜑 → (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
| 19 | 17, 18 | bitr4d 191 | . . . 4 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ 𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧)) |
| 20 | df-br 4045 | . . . 4 ⊢ (𝑦◡𝐹𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐹) | |
| 21 | df-br 4045 | . . . 4 ⊢ (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) | |
| 22 | 19, 20, 21 | 3bitr3g 222 | . . 3 ⊢ (𝜑 → (〈𝑦, 𝑧〉 ∈ ◡𝐹 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
| 23 | 22 | eqrelrdv2 4774 | . 2 ⊢ (((Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) ∧ 𝜑) → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| 24 | 9, 23 | mpancom 422 | 1 ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 ⊆ wss 3166 〈cop 3636 class class class wbr 4044 ↦ cmpt 4105 × cxp 4673 ◡ccnv 4674 ran crn 4676 Rel wrel 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |