![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordiso | GIF version |
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordiso | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 4970 | . . . . 5 ⊢ (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V) | |
2 | isoid 5831 | . . . . 5 ⊢ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) | |
3 | isoeq1 5822 | . . . . . 6 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴))) | |
4 | 3 | spcegv 2840 | . . . . 5 ⊢ (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))) |
5 | 1, 2, 4 | mpisyl 1457 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
6 | 5 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
7 | isoeq5 5826 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵))) | |
8 | 7 | exbidv 1836 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
9 | 6, 8 | syl5ibcom 155 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
10 | eloni 4393 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
11 | eloni 4393 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
12 | ordiso2 7063 | . . . . . 6 ⊢ ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | |
13 | 12 | 3coml 1212 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ 𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵) |
14 | 13 | 3expia 1207 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
15 | 10, 11, 14 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
16 | 15 | exlimdv 1830 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
17 | 9, 16 | impbid 129 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 Vcvv 2752 E cep 4305 I cid 4306 Ord word 4380 Oncon0 4381 ↾ cres 4646 Isom wiso 5236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4307 df-id 4311 df-iord 4384 df-on 4386 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |