| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordiso | GIF version | ||
| Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordiso | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resiexg 5023 | . . . . 5 ⊢ (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V) | |
| 2 | isoid 5902 | . . . . 5 ⊢ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) | |
| 3 | isoeq1 5893 | . . . . . 6 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴))) | |
| 4 | 3 | spcegv 2868 | . . . . 5 ⊢ (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))) |
| 5 | 1, 2, 4 | mpisyl 1467 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
| 7 | isoeq5 5897 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵))) | |
| 8 | 7 | exbidv 1849 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
| 9 | 6, 8 | syl5ibcom 155 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
| 10 | eloni 4440 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 11 | eloni 4440 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 12 | ordiso2 7163 | . . . . . 6 ⊢ ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | |
| 13 | 12 | 3coml 1213 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ 𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵) |
| 14 | 13 | 3expia 1208 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
| 15 | 10, 11, 14 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
| 16 | 15 | exlimdv 1843 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
| 17 | 9, 16 | impbid 129 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 E cep 4352 I cid 4353 Ord word 4427 Oncon0 4428 ↾ cres 4695 Isom wiso 5291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-iord 4431 df-on 4433 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |