Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordiso | GIF version |
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordiso | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 4936 | . . . . 5 ⊢ (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V) | |
2 | isoid 5789 | . . . . 5 ⊢ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) | |
3 | isoeq1 5780 | . . . . . 6 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴))) | |
4 | 3 | spcegv 2818 | . . . . 5 ⊢ (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))) |
5 | 1, 2, 4 | mpisyl 1439 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
6 | 5 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
7 | isoeq5 5784 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵))) | |
8 | 7 | exbidv 1818 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
9 | 6, 8 | syl5ibcom 154 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
10 | eloni 4360 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
11 | eloni 4360 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
12 | ordiso2 7012 | . . . . . 6 ⊢ ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | |
13 | 12 | 3coml 1205 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ 𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵) |
14 | 13 | 3expia 1200 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
15 | 10, 11, 14 | syl2an 287 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
16 | 15 | exlimdv 1812 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
17 | 9, 16 | impbid 128 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 E cep 4272 I cid 4273 Ord word 4347 Oncon0 4348 ↾ cres 4613 Isom wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-iord 4351 df-on 4353 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |