![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strsetsid | GIF version |
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strsetsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strsetsid.s | ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) |
strsetsid.f | ⊢ (𝜑 → Fun 𝑆) |
strsetsid.d | ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) |
Ref | Expression |
---|---|
strsetsid | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strsetsid.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) | |
2 | structex 12633 | . . . 4 ⊢ (𝑆 Struct 〈𝑀, 𝑁〉 → 𝑆 ∈ V) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
4 | strsetsid.d | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) | |
5 | strsetsid.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
6 | isstructim 12635 | . . . . . . . . 9 ⊢ (𝑆 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁))) | |
7 | 1, 6 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁))) |
8 | 7 | simp3d 1013 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 ⊆ (𝑀...𝑁)) |
9 | 7 | simp1d 1011 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) |
10 | 9 | simp1d 1011 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
11 | fzssnn 10137 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | |
12 | 10, 11 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑀...𝑁) ⊆ ℕ) |
13 | 8, 12 | sstrd 3190 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 ⊆ ℕ) |
14 | 13, 4 | sseldd 3181 | . . . . 5 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
15 | 5, 3, 14 | strnfvnd 12641 | . . . 4 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
16 | strsetsid.f | . . . . 5 ⊢ (𝜑 → Fun 𝑆) | |
17 | funfvex 5572 | . . . . 5 ⊢ ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → (𝑆‘(𝐸‘ndx)) ∈ V) | |
18 | 16, 4, 17 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) ∈ V) |
19 | 15, 18 | eqeltrd 2270 | . . 3 ⊢ (𝜑 → (𝐸‘𝑆) ∈ V) |
20 | setsvala 12652 | . . 3 ⊢ ((𝑆 ∈ V ∧ (𝐸‘ndx) ∈ dom 𝑆 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) | |
21 | 3, 4, 19, 20 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) |
22 | 15 | opeq2d 3812 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), (𝐸‘𝑆)〉 = 〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉) |
23 | 22 | sneqd 3632 | . . 3 ⊢ (𝜑 → {〈(𝐸‘ndx), (𝐸‘𝑆)〉} = {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) |
24 | 23 | uneq2d 3314 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉})) |
25 | nnssz 9337 | . . . . 5 ⊢ ℕ ⊆ ℤ | |
26 | 13, 25 | sstrdi 3192 | . . . 4 ⊢ (𝜑 → dom 𝑆 ⊆ ℤ) |
27 | zdceq 9395 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 = 𝑦) | |
28 | 27 | rgen2a 2548 | . . . 4 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 |
29 | ssralv 3244 | . . . . . 6 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | |
30 | 29 | ralimdv 2562 | . . . . 5 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) |
31 | ssralv 3244 | . . . . 5 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | |
32 | 30, 31 | syld 45 | . . . 4 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) |
33 | 26, 28, 32 | mpisyl 1457 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦) |
34 | funresdfunsndc 6561 | . . 3 ⊢ ((∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 ∧ Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) | |
35 | 33, 16, 4, 34 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) |
36 | 21, 24, 35 | 3eqtrrd 2231 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ∖ cdif 3151 ∪ cun 3152 ⊆ wss 3154 ∅c0 3447 {csn 3619 〈cop 3622 class class class wbr 4030 dom cdm 4660 ↾ cres 4662 Fun wfun 5249 ‘cfv 5255 (class class class)co 5919 ≤ cle 8057 ℕcn 8984 ℤcz 9320 ...cfz 10077 Struct cstr 12617 ndxcnx 12618 sSet csts 12619 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-struct 12623 df-slot 12625 df-sets 12628 |
This theorem is referenced by: strressid 12692 |
Copyright terms: Public domain | W3C validator |