| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > strsetsid | GIF version | ||
| Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| strsetsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) | 
| strsetsid.s | ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) | 
| strsetsid.f | ⊢ (𝜑 → Fun 𝑆) | 
| strsetsid.d | ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) | 
| Ref | Expression | 
|---|---|
| strsetsid | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | strsetsid.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) | |
| 2 | structex 12690 | . . . 4 ⊢ (𝑆 Struct 〈𝑀, 𝑁〉 → 𝑆 ∈ V) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) | 
| 4 | strsetsid.d | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) | |
| 5 | strsetsid.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | isstructim 12692 | . . . . . . . . 9 ⊢ (𝑆 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁))) | |
| 7 | 1, 6 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁))) | 
| 8 | 7 | simp3d 1013 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 ⊆ (𝑀...𝑁)) | 
| 9 | 7 | simp1d 1011 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) | 
| 10 | 9 | simp1d 1011 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 11 | fzssnn 10143 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | |
| 12 | 10, 11 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑀...𝑁) ⊆ ℕ) | 
| 13 | 8, 12 | sstrd 3193 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 ⊆ ℕ) | 
| 14 | 13, 4 | sseldd 3184 | . . . . 5 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) | 
| 15 | 5, 3, 14 | strnfvnd 12698 | . . . 4 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) | 
| 16 | strsetsid.f | . . . . 5 ⊢ (𝜑 → Fun 𝑆) | |
| 17 | funfvex 5575 | . . . . 5 ⊢ ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → (𝑆‘(𝐸‘ndx)) ∈ V) | |
| 18 | 16, 4, 17 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) ∈ V) | 
| 19 | 15, 18 | eqeltrd 2273 | . . 3 ⊢ (𝜑 → (𝐸‘𝑆) ∈ V) | 
| 20 | setsvala 12709 | . . 3 ⊢ ((𝑆 ∈ V ∧ (𝐸‘ndx) ∈ dom 𝑆 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) | |
| 21 | 3, 4, 19, 20 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) | 
| 22 | 15 | opeq2d 3815 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), (𝐸‘𝑆)〉 = 〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉) | 
| 23 | 22 | sneqd 3635 | . . 3 ⊢ (𝜑 → {〈(𝐸‘ndx), (𝐸‘𝑆)〉} = {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) | 
| 24 | 23 | uneq2d 3317 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉})) | 
| 25 | nnssz 9343 | . . . . 5 ⊢ ℕ ⊆ ℤ | |
| 26 | 13, 25 | sstrdi 3195 | . . . 4 ⊢ (𝜑 → dom 𝑆 ⊆ ℤ) | 
| 27 | zdceq 9401 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 = 𝑦) | |
| 28 | 27 | rgen2a 2551 | . . . 4 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 | 
| 29 | ssralv 3247 | . . . . . 6 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | |
| 30 | 29 | ralimdv 2565 | . . . . 5 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | 
| 31 | ssralv 3247 | . . . . 5 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | |
| 32 | 30, 31 | syld 45 | . . . 4 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | 
| 33 | 26, 28, 32 | mpisyl 1457 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦) | 
| 34 | funresdfunsndc 6564 | . . 3 ⊢ ((∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 ∧ Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) | |
| 35 | 33, 16, 4, 34 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) | 
| 36 | 21, 24, 35 | 3eqtrrd 2234 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ∖ cdif 3154 ∪ cun 3155 ⊆ wss 3157 ∅c0 3450 {csn 3622 〈cop 3625 class class class wbr 4033 dom cdm 4663 ↾ cres 4665 Fun wfun 5252 ‘cfv 5258 (class class class)co 5922 ≤ cle 8062 ℕcn 8990 ℤcz 9326 ...cfz 10083 Struct cstr 12674 ndxcnx 12675 sSet csts 12676 Slot cslot 12677 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 df-slot 12682 df-sets 12685 | 
| This theorem is referenced by: strressid 12749 | 
| Copyright terms: Public domain | W3C validator |