ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid GIF version

Theorem strsetsid 12711
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e 𝐸 = Slot (𝐸‘ndx)
strsetsid.s (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
strsetsid.f (𝜑 → Fun 𝑆)
strsetsid.d (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
strsetsid (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))

Proof of Theorem strsetsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4 (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
2 structex 12690 . . . 4 (𝑆 Struct ⟨𝑀, 𝑁⟩ → 𝑆 ∈ V)
31, 2syl 14 . . 3 (𝜑𝑆 ∈ V)
4 strsetsid.d . . 3 (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
5 strsetsid.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
6 isstructim 12692 . . . . . . . . 9 (𝑆 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
71, 6syl 14 . . . . . . . 8 (𝜑 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
87simp3d 1013 . . . . . . 7 (𝜑 → dom 𝑆 ⊆ (𝑀...𝑁))
97simp1d 1011 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
109simp1d 1011 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
11 fzssnn 10143 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ)
1210, 11syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑁) ⊆ ℕ)
138, 12sstrd 3193 . . . . . 6 (𝜑 → dom 𝑆 ⊆ ℕ)
1413, 4sseldd 3184 . . . . 5 (𝜑 → (𝐸‘ndx) ∈ ℕ)
155, 3, 14strnfvnd 12698 . . . 4 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
16 strsetsid.f . . . . 5 (𝜑 → Fun 𝑆)
17 funfvex 5575 . . . . 5 ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → (𝑆‘(𝐸‘ndx)) ∈ V)
1816, 4, 17syl2anc 411 . . . 4 (𝜑 → (𝑆‘(𝐸‘ndx)) ∈ V)
1915, 18eqeltrd 2273 . . 3 (𝜑 → (𝐸𝑆) ∈ V)
20 setsvala 12709 . . 3 ((𝑆 ∈ V ∧ (𝐸‘ndx) ∈ dom 𝑆 ∧ (𝐸𝑆) ∈ V) → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
213, 4, 19, 20syl3anc 1249 . 2 (𝜑 → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
2215opeq2d 3815 . . . 4 (𝜑 → ⟨(𝐸‘ndx), (𝐸𝑆)⟩ = ⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩)
2322sneqd 3635 . . 3 (𝜑 → {⟨(𝐸‘ndx), (𝐸𝑆)⟩} = {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩})
2423uneq2d 3317 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}))
25 nnssz 9343 . . . . 5 ℕ ⊆ ℤ
2613, 25sstrdi 3195 . . . 4 (𝜑 → dom 𝑆 ⊆ ℤ)
27 zdceq 9401 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 = 𝑦)
2827rgen2a 2551 . . . 4 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦
29 ssralv 3247 . . . . . 6 (dom 𝑆 ⊆ ℤ → (∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3029ralimdv 2565 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
31 ssralv 3247 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3230, 31syld 45 . . . 4 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3326, 28, 32mpisyl 1457 . . 3 (𝜑 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)
34 funresdfunsndc 6564 . . 3 ((∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 ∧ Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3533, 16, 4, 34syl3anc 1249 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3621, 24, 353eqtrrd 2234 1 (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622  cop 3625   class class class wbr 4033  dom cdm 4663  cres 4665  Fun wfun 5252  cfv 5258  (class class class)co 5922  cle 8062  cn 8990  cz 9326  ...cfz 10083   Struct cstr 12674  ndxcnx 12675   sSet csts 12676  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-struct 12680  df-slot 12682  df-sets 12685
This theorem is referenced by:  strressid  12749
  Copyright terms: Public domain W3C validator