ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid GIF version

Theorem strsetsid 13031
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e 𝐸 = Slot (𝐸‘ndx)
strsetsid.s (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
strsetsid.f (𝜑 → Fun 𝑆)
strsetsid.d (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
strsetsid (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))

Proof of Theorem strsetsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4 (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
2 structex 13010 . . . 4 (𝑆 Struct ⟨𝑀, 𝑁⟩ → 𝑆 ∈ V)
31, 2syl 14 . . 3 (𝜑𝑆 ∈ V)
4 strsetsid.d . . 3 (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
5 strsetsid.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
6 isstructim 13012 . . . . . . . . 9 (𝑆 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
71, 6syl 14 . . . . . . . 8 (𝜑 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
87simp3d 1016 . . . . . . 7 (𝜑 → dom 𝑆 ⊆ (𝑀...𝑁))
97simp1d 1014 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
109simp1d 1014 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
11 fzssnn 10232 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ)
1210, 11syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑁) ⊆ ℕ)
138, 12sstrd 3214 . . . . . 6 (𝜑 → dom 𝑆 ⊆ ℕ)
1413, 4sseldd 3205 . . . . 5 (𝜑 → (𝐸‘ndx) ∈ ℕ)
155, 3, 14strnfvnd 13018 . . . 4 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
16 strsetsid.f . . . . 5 (𝜑 → Fun 𝑆)
17 funfvex 5620 . . . . 5 ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → (𝑆‘(𝐸‘ndx)) ∈ V)
1816, 4, 17syl2anc 411 . . . 4 (𝜑 → (𝑆‘(𝐸‘ndx)) ∈ V)
1915, 18eqeltrd 2286 . . 3 (𝜑 → (𝐸𝑆) ∈ V)
20 setsvala 13029 . . 3 ((𝑆 ∈ V ∧ (𝐸‘ndx) ∈ dom 𝑆 ∧ (𝐸𝑆) ∈ V) → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
213, 4, 19, 20syl3anc 1252 . 2 (𝜑 → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
2215opeq2d 3843 . . . 4 (𝜑 → ⟨(𝐸‘ndx), (𝐸𝑆)⟩ = ⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩)
2322sneqd 3659 . . 3 (𝜑 → {⟨(𝐸‘ndx), (𝐸𝑆)⟩} = {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩})
2423uneq2d 3338 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}))
25 nnssz 9431 . . . . 5 ℕ ⊆ ℤ
2613, 25sstrdi 3216 . . . 4 (𝜑 → dom 𝑆 ⊆ ℤ)
27 zdceq 9490 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 = 𝑦)
2827rgen2a 2564 . . . 4 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦
29 ssralv 3268 . . . . . 6 (dom 𝑆 ⊆ ℤ → (∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3029ralimdv 2578 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
31 ssralv 3268 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3230, 31syld 45 . . . 4 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3326, 28, 32mpisyl 1469 . . 3 (𝜑 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)
34 funresdfunsndc 6622 . . 3 ((∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 ∧ Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3533, 16, 4, 34syl3anc 1252 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3621, 24, 353eqtrrd 2247 1 (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 838  w3a 983   = wceq 1375  wcel 2180  wral 2488  Vcvv 2779  cdif 3174  cun 3175  wss 3177  c0 3471  {csn 3646  cop 3649   class class class wbr 4062  dom cdm 4696  cres 4698  Fun wfun 5288  cfv 5294  (class class class)co 5974  cle 8150  cn 9078  cz 9414  ...cfz 10172   Struct cstr 12994  ndxcnx 12995   sSet csts 12996  Slot cslot 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-struct 13000  df-slot 13002  df-sets 13005
This theorem is referenced by:  strressid  13070
  Copyright terms: Public domain W3C validator