| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strsetsid | GIF version | ||
| Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strsetsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strsetsid.s | ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) |
| strsetsid.f | ⊢ (𝜑 → Fun 𝑆) |
| strsetsid.d | ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) |
| Ref | Expression |
|---|---|
| strsetsid | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strsetsid.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) | |
| 2 | structex 13052 | . . . 4 ⊢ (𝑆 Struct 〈𝑀, 𝑁〉 → 𝑆 ∈ V) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
| 4 | strsetsid.d | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) | |
| 5 | strsetsid.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | isstructim 13054 | . . . . . . . . 9 ⊢ (𝑆 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁))) | |
| 7 | 1, 6 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁))) |
| 8 | 7 | simp3d 1035 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 ⊆ (𝑀...𝑁)) |
| 9 | 7 | simp1d 1033 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) |
| 10 | 9 | simp1d 1033 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 11 | fzssnn 10272 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | |
| 12 | 10, 11 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑀...𝑁) ⊆ ℕ) |
| 13 | 8, 12 | sstrd 3234 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 ⊆ ℕ) |
| 14 | 13, 4 | sseldd 3225 | . . . . 5 ⊢ (𝜑 → (𝐸‘ndx) ∈ ℕ) |
| 15 | 5, 3, 14 | strnfvnd 13060 | . . . 4 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 16 | strsetsid.f | . . . . 5 ⊢ (𝜑 → Fun 𝑆) | |
| 17 | funfvex 5646 | . . . . 5 ⊢ ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → (𝑆‘(𝐸‘ndx)) ∈ V) | |
| 18 | 16, 4, 17 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) ∈ V) |
| 19 | 15, 18 | eqeltrd 2306 | . . 3 ⊢ (𝜑 → (𝐸‘𝑆) ∈ V) |
| 20 | setsvala 13071 | . . 3 ⊢ ((𝑆 ∈ V ∧ (𝐸‘ndx) ∈ dom 𝑆 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) | |
| 21 | 3, 4, 19, 20 | syl3anc 1271 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) |
| 22 | 15 | opeq2d 3864 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), (𝐸‘𝑆)〉 = 〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉) |
| 23 | 22 | sneqd 3679 | . . 3 ⊢ (𝜑 → {〈(𝐸‘ndx), (𝐸‘𝑆)〉} = {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) |
| 24 | 23 | uneq2d 3358 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉})) |
| 25 | nnssz 9471 | . . . . 5 ⊢ ℕ ⊆ ℤ | |
| 26 | 13, 25 | sstrdi 3236 | . . . 4 ⊢ (𝜑 → dom 𝑆 ⊆ ℤ) |
| 27 | zdceq 9530 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 = 𝑦) | |
| 28 | 27 | rgen2a 2584 | . . . 4 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 |
| 29 | ssralv 3288 | . . . . . 6 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | |
| 30 | 29 | ralimdv 2598 | . . . . 5 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) |
| 31 | ssralv 3288 | . . . . 5 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) | |
| 32 | 30, 31 | syld 45 | . . . 4 ⊢ (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)) |
| 33 | 26, 28, 32 | mpisyl 1489 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦) |
| 34 | funresdfunsndc 6660 | . . 3 ⊢ ((∀𝑥 ∈ dom 𝑆∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 ∧ Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) | |
| 35 | 33, 16, 4, 34 | syl3anc 1271 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) |
| 36 | 21, 24, 35 | 3eqtrrd 2267 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 839 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ∖ cdif 3194 ∪ cun 3195 ⊆ wss 3197 ∅c0 3491 {csn 3666 〈cop 3669 class class class wbr 4083 dom cdm 4719 ↾ cres 4721 Fun wfun 5312 ‘cfv 5318 (class class class)co 6007 ≤ cle 8190 ℕcn 9118 ℤcz 9454 ...cfz 10212 Struct cstr 13036 ndxcnx 13037 sSet csts 13038 Slot cslot 13039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-struct 13042 df-slot 13044 df-sets 13047 |
| This theorem is referenced by: strressid 13112 |
| Copyright terms: Public domain | W3C validator |