Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid GIF version

Theorem strsetsid 11590
 Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e 𝐸 = Slot (𝐸‘ndx)
strsetsid.s (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
strsetsid.f (𝜑 → Fun 𝑆)
strsetsid.d (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
strsetsid (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))

Proof of Theorem strsetsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4 (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
2 structex 11569 . . . 4 (𝑆 Struct ⟨𝑀, 𝑁⟩ → 𝑆 ∈ V)
31, 2syl 14 . . 3 (𝜑𝑆 ∈ V)
4 strsetsid.d . . 3 (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
5 strsetsid.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
6 isstructim 11571 . . . . . . . . 9 (𝑆 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
71, 6syl 14 . . . . . . . 8 (𝜑 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
87simp3d 958 . . . . . . 7 (𝜑 → dom 𝑆 ⊆ (𝑀...𝑁))
97simp1d 956 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
109simp1d 956 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
11 fzssnn 9545 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ)
1210, 11syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑁) ⊆ ℕ)
138, 12sstrd 3038 . . . . . 6 (𝜑 → dom 𝑆 ⊆ ℕ)
1413, 4sseldd 3029 . . . . 5 (𝜑 → (𝐸‘ndx) ∈ ℕ)
155, 3, 14strnfvnd 11577 . . . 4 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
16 strsetsid.f . . . . 5 (𝜑 → Fun 𝑆)
17 funfvex 5337 . . . . 5 ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → (𝑆‘(𝐸‘ndx)) ∈ V)
1816, 4, 17syl2anc 404 . . . 4 (𝜑 → (𝑆‘(𝐸‘ndx)) ∈ V)
1915, 18eqeltrd 2165 . . 3 (𝜑 → (𝐸𝑆) ∈ V)
20 setsvala 11588 . . 3 ((𝑆 ∈ V ∧ (𝐸‘ndx) ∈ dom 𝑆 ∧ (𝐸𝑆) ∈ V) → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
213, 4, 19, 20syl3anc 1175 . 2 (𝜑 → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
2215opeq2d 3637 . . . 4 (𝜑 → ⟨(𝐸‘ndx), (𝐸𝑆)⟩ = ⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩)
2322sneqd 3465 . . 3 (𝜑 → {⟨(𝐸‘ndx), (𝐸𝑆)⟩} = {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩})
2423uneq2d 3157 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}))
25 nnssz 8830 . . . . 5 ℕ ⊆ ℤ
2613, 25syl6ss 3040 . . . 4 (𝜑 → dom 𝑆 ⊆ ℤ)
27 zdceq 8885 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 = 𝑦)
2827rgen2a 2430 . . . 4 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦
29 ssralv 3088 . . . . . 6 (dom 𝑆 ⊆ ℤ → (∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3029ralimdv 2443 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
31 ssralv 3088 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3230, 31syld 45 . . . 4 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3326, 28, 32mpisyl 1381 . . 3 (𝜑 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)
34 funresdfunsndc 6281 . . 3 ((∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 ∧ Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3533, 16, 4, 34syl3anc 1175 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3621, 24, 353eqtrrd 2126 1 (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))
 Colors of variables: wff set class Syntax hints:   → wi 4  DECID wdc 781   ∧ w3a 925   = wceq 1290   ∈ wcel 1439  ∀wral 2360  Vcvv 2622   ∖ cdif 2999   ∪ cun 3000   ⊆ wss 3002  ∅c0 3289  {csn 3452  ⟨cop 3455   class class class wbr 3853  dom cdm 4454   ↾ cres 4456  Fun wfun 5024  ‘cfv 5030  (class class class)co 5668   ≤ cle 7586  ℕcn 8485  ℤcz 8813  ...cfz 9487   Struct cstr 11553  ndxcnx 11554   sSet csts 11555  Slot cslot 11556 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-ltadd 7524 This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083  df-fz 9488  df-struct 11559  df-slot 11561  df-sets 11564 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator