ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid GIF version

Theorem strsetsid 12210
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e 𝐸 = Slot (𝐸‘ndx)
strsetsid.s (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
strsetsid.f (𝜑 → Fun 𝑆)
strsetsid.d (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
strsetsid (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))

Proof of Theorem strsetsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4 (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)
2 structex 12189 . . . 4 (𝑆 Struct ⟨𝑀, 𝑁⟩ → 𝑆 ∈ V)
31, 2syl 14 . . 3 (𝜑𝑆 ∈ V)
4 strsetsid.d . . 3 (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)
5 strsetsid.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
6 isstructim 12191 . . . . . . . . 9 (𝑆 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
71, 6syl 14 . . . . . . . 8 (𝜑 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝑆 ∖ {∅}) ∧ dom 𝑆 ⊆ (𝑀...𝑁)))
87simp3d 996 . . . . . . 7 (𝜑 → dom 𝑆 ⊆ (𝑀...𝑁))
97simp1d 994 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
109simp1d 994 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
11 fzssnn 9965 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ)
1210, 11syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑁) ⊆ ℕ)
138, 12sstrd 3138 . . . . . 6 (𝜑 → dom 𝑆 ⊆ ℕ)
1413, 4sseldd 3129 . . . . 5 (𝜑 → (𝐸‘ndx) ∈ ℕ)
155, 3, 14strnfvnd 12197 . . . 4 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
16 strsetsid.f . . . . 5 (𝜑 → Fun 𝑆)
17 funfvex 5484 . . . . 5 ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → (𝑆‘(𝐸‘ndx)) ∈ V)
1816, 4, 17syl2anc 409 . . . 4 (𝜑 → (𝑆‘(𝐸‘ndx)) ∈ V)
1915, 18eqeltrd 2234 . . 3 (𝜑 → (𝐸𝑆) ∈ V)
20 setsvala 12208 . . 3 ((𝑆 ∈ V ∧ (𝐸‘ndx) ∈ dom 𝑆 ∧ (𝐸𝑆) ∈ V) → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
213, 4, 19, 20syl3anc 1220 . 2 (𝜑 → (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}))
2215opeq2d 3748 . . . 4 (𝜑 → ⟨(𝐸‘ndx), (𝐸𝑆)⟩ = ⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩)
2322sneqd 3573 . . 3 (𝜑 → {⟨(𝐸‘ndx), (𝐸𝑆)⟩} = {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩})
2423uneq2d 3261 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝐸𝑆)⟩}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}))
25 nnssz 9179 . . . . 5 ℕ ⊆ ℤ
2613, 25sstrdi 3140 . . . 4 (𝜑 → dom 𝑆 ⊆ ℤ)
27 zdceq 9234 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 = 𝑦)
2827rgen2a 2511 . . . 4 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦
29 ssralv 3192 . . . . . 6 (dom 𝑆 ⊆ ℤ → (∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3029ralimdv 2525 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
31 ssralv 3192 . . . . 5 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3230, 31syld 45 . . . 4 (dom 𝑆 ⊆ ℤ → (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ DECID 𝑥 = 𝑦 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦))
3326, 28, 32mpisyl 1426 . . 3 (𝜑 → ∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦)
34 funresdfunsndc 6450 . . 3 ((∀𝑥 ∈ dom 𝑆𝑦 ∈ dom 𝑆DECID 𝑥 = 𝑦 ∧ Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3533, 16, 4, 34syl3anc 1220 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), (𝑆‘(𝐸‘ndx))⟩}) = 𝑆)
3621, 24, 353eqtrrd 2195 1 (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 820  w3a 963   = wceq 1335  wcel 2128  wral 2435  Vcvv 2712  cdif 3099  cun 3100  wss 3102  c0 3394  {csn 3560  cop 3563   class class class wbr 3965  dom cdm 4585  cres 4587  Fun wfun 5163  cfv 5169  (class class class)co 5821  cle 7908  cn 8828  cz 9162  ...cfz 9907   Struct cstr 12173  ndxcnx 12174   sSet csts 12175  Slot cslot 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-addcom 7827  ax-addass 7829  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-0id 7835  ax-rnegex 7836  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-ltadd 7843
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-inn 8829  df-n0 9086  df-z 9163  df-uz 9435  df-fz 9908  df-struct 12179  df-slot 12181  df-sets 12184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator